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0900 Intro: Applications in vision and graphics.

• Kinetre (Siggraph 12)
• Dolphins (PAMI 13)
• Nonrigid tracking (Siggraph 14)
• FlexSense (CHI 15)
• Hand tracking (Siggraph 16)

Lots of exciting and inspirational examples of model fitting:

0920 Session I: Matrix and vector calculus, nonlinear optimization

vector functions and the Jacobian, generalized Jacobian•
advanced matrix operations: block operations, kronecker products etc•
derivatives of matrix expressions•
sparse matrices and sparse storage•
finite-difference versus symbolic derivatives•
nonlinear optimization, Gauss-Newton and Levenberg-Marquardt algorithms•
gradient descent vs Newton•
linear vs quadratic convergence•

1030 Coffee

1045 Session II: Curves and Correspondences

What is a curve? Parametric descriptions of curves and surfaces•
Curves and data points: closest point operations•
Fitting curves to data: correspondences•
Iterated closest points•
“Lifting” correspondences•
Worked example: Gauss's Ceres problem•

1140 Break and stretch

1145 Session III: Surfaces

Splines and subdivision surfaces in 3D•
Optimizing with subdivision•
Implementing for speed•

1230 Lunch

1400 Session IV: Robustness and speed

Models•
LBS, blendshapes, NURBS, lower order…•
Priors/smoothers/convergers•
ARAP•
Background - DT ok for tracking, not for personalization•
Priors on correspondences, e.g. piecewise continuous contour 
generator

•

Exposing Structure in Sum of Squares Form•

Robust terms•
square root trick•
A great example of where “lifting” really helps•

Error metric•

1500 Coffee/Stretch

1515 Session V: Software

OpenSubdiv•
Eigen•
Ceres•
Opt (Guest lecture from Matthias Niessner)•
AD tools: Theano etc•

1615 More coffee, more stretching

1630 Session VI: Conclusions, open problems, misc…

Topology adaptation•
Where are the local minima?•
And where lifting really hurts: VarPro algorithms•
Implementing rotations: quaternions vs infinitesimals with recentering•
derivatives of minimization problems•
Schur complement QR•

1715 Close

http://awf.fitzgibbon.ie/cvpr16_tutorial



PEOPLE

Finding Nemo: Deformable Object Class Modelling using Curve Matching CVPR ’10
Mukta Prasad, Andrew Fitzgibbon, Andrew Zisserman, Luc Van Gool

KinÊtre: Animating the World with the Human Body UIST ’12
Jiawen (Kevin) Chen, Shahram Izadi, Fitzgibbon

The Vitruvian Manifold: Inferring dense correspondences for one-shot human pose estimation CVPR ’12
Jonathan Taylor, Jamie Shotton, Toby Sharp, Fitzgibbon

What shape are dolphins? Building 3D morphable models from 2D images PAMI ’13
Tom Cashman, Fitzgibbon

User-Specific Hand Modeling from Monocular Depth Sequences CVPR ’14
Taylor, Richard Stebbing, Varun Ramakrishna, Cem Keskin, Shotton, Izadi, Fitzgibbon, Aaron Hertzmann 

Real-Time Non-Rigid Reconstruction Using an RGB-D Camera SIGGRAPH ’14
Michael Zollhöfer, Matthias Nießner, Izadi, Christoph Rhemann, Christopher Zach, 
Matthew Fisher, Chenglei Wu, Fitzgibbon, Charles Loop, Christian Theobalt, Marc Stamminger

Learning an Efficient Model of Hand Shape Variation from Depth Images CVPR ’15
Sameh Khamis, Taylor, Shotton, Keskin, Izadi, Fitzgibbon 

Efficient and Precise Interactive Hand Tracking through Joint, Continuous Optimization of Pose SIGGRAPH ‘16
and Correspondences
Taylor, Lucas Bordeaux, Cashman, Bob Corish, Keskin, Sharp, Eduardo Soto, David Sweeney, Julien Valentin, 
Ben Luff, Arran Topalian, Erroll Wood, Khamis, Kohli, Izadi, Richard Banks, Fitzgibbon, Shotton.

Fits Like a Glove: Rapid and Reliable Hand Shape Personalization. CVPR ’16
David Joseph Tan, Cashman, Taylor, Fitzgibbon, Daniel Tarlow, Khamis, Izadi, Shotton.



LEARN HOW TO SOLVE HARD VISION PROBLEMS, 
USING TOOLS THAT MAY APPEAR INELEGANT, 
BUT ARE MUCH SMARTER THAN THEY LOOK.

Goal
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APPLICATIONS

Curve/surface fitting Parameter estimation “Bundle adjustment”
(Video from our friends at Google)



KINÊTRE 6



KINÊTRE 7



KINÊTRE 8



VITRUVIAN MANIFOLD, CVPR ’12







FITTING SUBDIVISION SURFACES TO 2D DATA



FITTING SUBDIVISION SURFACES TO 2D DATA
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FITTING POLYGON MESHES TO VIDEO



16

[3D Scanning Deformable Objects with a Single RGBD Sensor, Dou et al, CVPR15]

Input Kinect Stream KinectFusion Deformable Fusion



REALTIME MESH FITTING TO 3D 17

[Zollhöfer &al, SIGGRAPH ’14]



FLEXSENSE (UIST 2015)



HAND TRACKING

• Hand Shape Personalization:
• CVPR 2014, CVPR 2015, CVPR 2016

• Discriminative Hand Pose Reinitialization
• ICCV 2015, CHI 2015

• Hand Pose Estimation via Model Fitting (read “Hand Tracking”)
• CHI 2015, SIGGRAPH 2016



IMAGE DENOISING 20[STRANDMARK & AGARWAL, 2014, arXiv:1403.5590]



MATRIX FACTORIZATION [HONG & F., ICCV 15]



MATRIX FACTORIZATION [HONG & F., ICCV 15]



MYTH: YOU DON’T NEED TO OPTIMIZE FAR 23



24





Write energy describing the image collection

෍

𝑓=1

𝐹

𝐸data 𝐼𝑓 , 𝜽𝑓 + 𝐸reg 𝜽𝑓 , 𝜽core

Where:

𝜽𝑓 are (unknown) parameters of surface model in frame 𝑓

𝜽core are (unknown) parameters of some shape model (e.g. linear 
combination) and 𝐸reg measures distance, e.g. ARAP

And optimize it using Levenberg-Marquardt 

 (i.e. any Newton-like algorithm, making maximum use of problem 
structure)

FOR EACH TASK, THE METHOD IS THE SAME 26



 So, you can do lots of things by “fitting models to 
data”.

 How do you do it right?

 Let’s look at some examples.

27



CONTINUOUS 
OPTIMIZATION

Andrew Fitzgibbon
Microsoft Research Cambridge



GOAL

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ,

Devise strategies for finding 𝑥 which minimizes 𝑓

• Gradient descent++: Stochastic, Block, Minibatch

• Coordinate descent++: Block

• Newton++: Gauss, Quasi, Damped, Levenberg Marquardt, dogleg, Trust 
region, Doublestep LM, [L-]BFGS, Nonlin CG

• Not covered
• Proximal methods: Nesterov, ADMM…



CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓



CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓



32

quadratic

convex

quasiconvex

multi-
extremum
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quadratic

convex

quasiconvex

multi-
extremum

Easy Hard



DERIVATIVES

Fast minimization depends on derivatives

 Gradient 𝑓:ℝ𝑛 ↦ ℝ

 When 𝑓 𝒙 = 𝑭 𝒙 2

𝑭:ℝ𝑛 ↦ ℝ𝑚

use Jacobian
𝜕𝑭

𝜕𝒙

34
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EXAMPLE

x

y
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>> print -dmeta



EXAMPLE

>> print –dpdf % then go to pdf and paste
OR
>> set(findobj(1, 'type', 'line'), 'linesmoothing', 'on') % then screengrab



EXAMPLE

>> set(gcf, 'paperUnits', 'centimeters', 'paperposition', [1 1 9 6.6])
>> print –dpdf % then go to pdf and paste



SWITCH TO MATLAB…



ALTERNATION

Easy Hard



GRADIENT DESCENT

 Alternation is slow 
because valleys may not 
be axis aligned

 So try gradient descent?
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GRADIENT DESCENT

 Alternation is slow 
because valleys may not 
be axis aligned

 So try gradient descent?



GRADIENT DESCENT

 Alternation is slow 
because valleys may not 
be axis aligned

 So try gradient descent?

 Note that convergence 
proofs are available for 
both of the above

 But so what?



AND ON A HARD PROBLEM



USE A BETTER ALGORITHM

 (Nonlinear) conjugate 
gradients

 Uses 1st derivatives only

 Avoids “undoing” 
previous work



USE A BETTER ALGORITHM

 (Nonlinear) conjugate 
gradients

 Uses 1st derivatives only

 And avoids “undoing” 
previous work

 101 iterations on 
this problem



BUT WE CAN DO BETTER…



USE SECOND DERIVATIVES…

 Starting with 𝒙 how can I choose 𝜹
so that 𝑓 𝒙 + 𝜹 is better than 𝑓(𝒙)?

 So compute
min
𝜹∈ℝ𝑑

𝑓 𝒙 + 𝜹

 But hang on, that’s the same problem we were trying to 
solve?



USE SECOND DERIVATIVES…

 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 So compute
min
𝛿

𝑓 𝑥 + 𝛿

≈ min
𝛿

𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2𝛿

⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)



USE SECOND DERIVATIVES…

 How does it look?

𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2
𝛿⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)



USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹

𝑓 + 𝜹⊤𝑔 + 1
2𝜹

⊤𝐻 𝜹

[derive]



USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹

𝑓 + 𝜹⊤𝑔 + 1
2𝜹

⊤𝐻 𝜹

𝜹 = −𝐻−1𝑔



IS THAT A GOOD IDEA?

>> use demos

>> demo_taylor_2d(0, 'newton', 'rosenbrock')

>> demo_taylor_2d(0, 'newton', 'sqrt_rosenbrock')

>> demo_taylor_2d(1, 'damped newton ls', 'rosenbrock')



USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Updates:
𝜹Newton = −𝐻−1𝑔

𝜹GradientDescent = −𝜆𝑔



USE SECOND DERIVATIVES…

 Updates:
𝜹Newton = −𝐻−1𝑔

𝜹GradientDescent = −𝜆𝑔

 So combine them:
𝜹DampedNewton = − 𝐻 + 𝜆−1𝐼𝑑

−1𝑔

= −𝜆 𝜆𝐻 + 𝐼𝑑
−1𝑔

 𝜆 small ⇒conservative gradient step

 𝜆 large ⇒Newton step



UPDATING 𝜆

𝜆 = 10−3; 𝜆′ = 3;

while 𝜆 < 109

𝑓, 𝒈,𝑯 = error_function(𝒙𝑘) % Perhaps Gauss-Newton for H

𝜹 = − 𝑯+ 𝜆𝑰 \𝒈 % Many ways to do this efficiently

𝒙𝑛𝑒𝑤 = 𝒙𝑘 + 𝜹

if error_function(𝒙𝑛𝑒𝑤) < 𝑓: 

𝒙𝑘 = 𝒙𝑛𝑒𝑤 % Decreased error, accept the new 𝑥

𝜆 = 𝜆/𝜆′; 𝜆′ = 3 % Doing well—decrease 𝜆

else

𝜆 = 𝜆𝜆′; 𝜆′ = 3𝜆′ % Doing badly—increase 𝜆 quick



1ST DERIVATIVES AGAIN

Levenberg-Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

 where 𝑓𝑖(𝑥) are 

 zero-mean

 small at the optimum



BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

𝛻𝑓 𝑥 =

𝛻𝛻⊤𝑓 𝑥 =



BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

𝛻𝑓 𝑥 =෍

𝑖

2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)

𝛻𝛻⊤𝑓 𝑥 = 2෍

𝑖

𝑓𝑖 𝑥 𝛻𝛻⊤𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻
⊤𝑓𝑖 𝑥



ORDER N CUBED?

 Not 𝑂 𝑛3 if you exploit sparsity of Hessian or 
Jacobian

J =
𝛻𝑓1(𝑥)

⋮
𝛻𝑓𝑛(𝑥)



TYPICAL HESSIAN STRUCTURE



CONCLUSION: YMMV



CONCLUSION: YMMV

GIRAFFE

500 runs

for k=1:500
𝑥0 = 𝑟𝑎𝑛𝑑𝑛 𝑛, 1 ;
𝑥∗ = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓, 𝑥0 ;
𝐸 𝑘 = 𝑓 𝑥∗

end
plot(sort(E));



CONCLUSION: YMMV

FACE

1000 runs

DINOSAUR

1000 runs

GIRAFFE

500 runs



 On many problems, 
alternation is just fine
 Indeed always start with a 

couple of alternation steps

 Computing 2nd derivatives is 
a pain
 But you don’t need to for LM

 But just alternation is not
 Unless you’re willing to 

problem-select

 Convergence guarantees 
are fine, but practice is 
what matters

 Inverting the Hessian is 
rarely 𝑂(𝑛3)

There is no universal optimizer



ON FINITE-DIFFERENCE DERIVATIVES

 𝛻𝑓 =
1

𝜇

𝑓 𝑥 + 𝑒1 − 𝑓(𝑥)
⋮

𝑓 𝑥 + 𝑒𝑑 − 𝑓(𝑥)

 Surprisingly accurate for e.g. 𝜇 = 10−5 (in double prec.)

 Incredibly slow.. Unless (see next slide)

 Useful for checking your analytic derivatives

 Incredibly slow.  Try Powell or Simplex instead.

 Central differences twice as slow, somewhat more accurate



GRAPH COLOURING FOR FINITE DIFFS

 Normally try 𝑒1 to 𝑒𝑑 sequentially

 But if we know the nonzero structure of the Jacobian, 
can go rather faster.

67



ON SCALING

 We’re minimizing 𝑓(𝑥)

 Many algorithms will be happier if entries of 𝑥 are all 
“around 1”.

 E.g. don’t have angle in degrees and distances in km

 Many algorithms may want 𝑓 values to be “close to 
𝑥 or close to zero at the optimum”.

 Specifically, think about roundoff in quantities like 𝑓 𝑥𝑘+1 −
𝑓 𝑥𝑘 being compared to numbers like 10−6



QUESTIONS

 What about stochastic gradient descent?

 You can do analogous 2nd order things.

 What about LBFGS?

 I haven’t had much success with it, other folk love it…

 I tried lsqnonlin and it was really slow—why?

 Wrong derivatives (e.g. finite-differences)

 Didn’t use sparsity correctly

 Didn’t set “options.Algorithm” or “options.LargeScale”.



 Resources:

1. Matlab fminsearch and fminunc documentation

2. awful.codeplex.com au_optimproblem

3. Tom Minka webpage on matrix derivatives

4. Google “ceres” solver

5. UTorono “Theano” system for Python



 Gotchas with lsqnonlin
 opts.LargeScale = 'on';

 opts.Jacobian = 'on';

 Need non-rank-def J?

 Need to implement JacobMult?



CONVERGENCE CURVES, ONE INSTANCE
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EXAMPLE: SHAPE FITTING

76



SHAPE QUIZ 77



SHAPE QUIZ 78

t = 0:.01:2; 

plot(cos(t)*2, sin(t)); 



SHAPE QUIZ 79

t = 0:.01:2; 

plot(cos(t)*2, sin(t)); 



SHAPE QUIZ 80

>> u = 0:.1:2*pi; v= 0:.1:2*pi;
>> l = ones(size(v));
>> u = u'*l;
>> v = l'*v;
>> plot3(cos(u), sin(u), v, 'k.')



SHAPE QUIZ 81

>> u = 0:.1:2*pi; v= 0:.1:2*pi;
>> l = ones(size(v));
>> u = u'*l;
>> v = l'*v;
>> plot3(cos(u), sin(u), v, 'k.')



What is a shape?
• Functions

• Curves

• Surfaces

82



A SHAPE IS A FUNCTION

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)

83
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A SHAPE IS A FUNCTION

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)

84

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4



SHAPES DESCRIBE DATA85



SHAPES DESCRIBE DATA86

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑



SHAPES DESCRIBE DATA87

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = sin 𝑥 + 𝑎𝑥 + 𝑏



SHAPES DESCRIBE DATA88

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = if 𝑥 < 𝑎
𝑥 − 𝑏 2 + 𝑐

else
− 𝑥 − 𝑑 2 + 𝑒



A SHAPE IS A FUNCTION89
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Point3D(cos(u), sin(u), v)
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FUNCTIONS OVER DOMAINS Ω

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)

90
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CURVES

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)
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PARAMETERIZED SHAPES

abstract Curve {

method eval(t::Interval)::Point2D

};

92



PARAMETERIZED SHAPES93
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abstract Curve {

method eval(t::Interval)::Point2D

};

type Conic < Curve {

eval(t) = 

Point2D(t^2 + 2, t^2 – t + 1)

};



PARAMETERIZED SHAPES

abstract Curve {

method eval(t::Interval)::Point2D

};

type Conic < Curve {

ϴ::Real[]; // Shape parameters

eval(t) = 

Point2D( ϴ[0]*t^2 + ϴ[1]*t + ϴ[2], 

ϴ[3]*t^2 + ϴ[4]*t + ϴ[5] )

};

Conic([1,0,2,1,-1,1])

94
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

}; 

95

closest point
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

}; 

distance(x) = norm(x – this.closest_point(x))
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

}; 

distance(x) = 

minimize(λ(t) norm(this.eval(t) – x), 0.0)
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

...

function f(t) = norm(this.eval(t) – x)^2

distance(x) =  minimize(f, Interval::Min)

function minimize(f, t) 

while not converged

t -= 𝜶 * f’(t)  // Compute derivative
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method eval’(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

}; 
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closest 
point

x

𝑦 = if 𝑡 < 𝑎
𝑡 − 𝑏 2 + 𝑐

else
𝑓 𝑡 − 𝑑 2 + 𝑒

𝑦′ = if 𝑡 < 𝑎
2(𝑡 − 𝑏)

else
2𝑓(𝑡 − 𝑑)



Shape, meet thy data
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min
𝜃

෍

𝑛=1

𝑁

𝐶 𝜃 . closest_point(𝒔𝒏)

Sum-of-min problems

𝒔𝑛

A MORE GENERAL PROBLEM CLASS



AN EXEMPLARY PROBLEM

102

“Based on a true story”, not necessarily historically accurate

Note well: this problem is a good proxy for much more realistic problems: 

1. Stereo camera calibration

2. Multiple-camera bundle adjustment

3. Surface fitting, e.g. subdivision surfaces to range data, realtime hand tracking

4. Matrix completion

5. Image denoising.

[Inspired by Neil Lawrence’s professorial inaugural]



AN EXEMPLARY PROBLEM

The year: 1801
The hot topic: A “guest planet”, named Ceres
The big question: Where will it reappear?



AN EXEMPLARY PROBLEM



AN EXEMPLARY PROBLEM

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Sample 𝒔𝑛



WE KNOW THE EXACT FORM OF THE MODEL 106

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Known model: Points lie on an ellipse

Clear(ish) objective:  
Estimate the ellipse parameters, intersect with circle of sun, achieve fame



AND ESTIMATING IT WELL GETS US CLOSE… 107



RUNNING AN OFF-THE-SHELF FITTER DOES NOT. 108

“Direct least squares fitting of ellipses”
[Fitzgibbon et al, 1999]

Does not minimize “sum of distances” 
objective, but a “nearby” convex objective



WE KNOW THE EXACT FORM OF THE MODEL 109

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at unknown times 𝑡𝑛

Known model: Points lie on an ellipse
𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Sample 𝒔𝑛



A PARAMETRIC FUNCTION AND A CURVE 110

A parametric description

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Defines a curve (a set of points in ℝ2)

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

Potential confusion: curve parameter 𝑡 and 
shape parameter vector 𝜽.  This should be ok for 
this talk.

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6



DISTANCES AND CLOSEST POINTS 111

Sample 𝒔𝑛

All our algorithms will start with a guess of 𝜽 and 
refine it.

We will often want to think about the distance of 
a sample 𝒔 from the curve 𝐶(𝜽).

Often, closest point is appropriate. 
[Others easily handled too.]

𝐷 𝒔, 𝜽 ≔ min
𝒙∈𝐶 𝜽

𝒔 − 𝒙 2

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋



A BETTER ESTIMATE 112

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Minimize over all ellipses 𝜽

𝜽∗ ≔ argmin
𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽

Just using an off-the-shelf optimizer.
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𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Sample 𝒔𝑛



AND ESTIMATING IT WELL GETS US CLOSE… 114



SO ARE WE DONE YET?

 We have an accurate solution
 Certainly better than the “closed form” algorithm, which minimized a “nearby” convex 

objective.

 All we need to worry about now is speed…
 If you take 3 weeks to make a prediction, someone else will get the fame.

 Speed is everything.  If speed didn’t matter, you would just use random search.

 Strategies to speed it up
 Attack the inner loop

 Remove discrete minimization in 𝐷(𝒔, 𝜽)

 Analyse the problem again

 Understand our tools: ‘fminunc’, or whatever we’re using

 Compute analytic derivatives

115



SPEED RESULTS: SNEAK PREVIEW

A slow method A fast method, slowed down 10x



SPEEDUP 1: ATTACK THE INNER 
LOOP

117



SPEEDUP 1: ATTACK THE INNER LOOP 118

𝒔



SPEEDUP 1: ATTACK THE INNER LOOP 119

𝒔

𝐷 𝒔, 𝜽 = min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Define 𝐸(𝑡) = 𝒔 − 𝒄(𝑡; 𝜽) 2

Set 
𝑑𝐸

𝑑𝑡
= 0

Yields 4th order polynomial, extract 4 roots.

Much cheaper than previous 
implementation.

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6



SPEEDUP 2: ANALYSE THE 
PROBLEM
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LOOK AT THE PROBLEM AGAIN 121

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Minimize over all ellipses 𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽 =෍

𝑛

min
𝑡

𝒔𝑛 − 𝒄 𝑡; 𝜽 2

Notice 𝒄 𝑡; 𝜽 is linear in 𝜽, so function is 

=෍

𝑛

min
𝑡𝑛

𝒔𝑛 − 𝐴 𝑡𝑛 𝜽 2

And we can solve in closed form:
• for T = 𝑡𝑛 𝑛=1

𝑁 given 𝜽. Cost 𝑁 RootOfs.
• and 𝜽 given 𝑇. Cost one linear solve.

So alternate—“ICP”, “EM”, “Block Coordinate 
Descent”

𝜽∗ ≔ argmin
𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽



bad decision…
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CONVERGENCE RATES

ICP, a bad 1st-order method A second order method, slowed down 10x



CONVERGENCE CURVES
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“Previous iteration” convergence test 

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘−1 < 𝜏 will stop here.

“Half the time ago” convergence test

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘/2 < 𝜏 will stop here.



AH, BUT WHAT ABOUT TEST ERROR?
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෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑢

𝑓𝑛 𝑢, 𝜃



෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑢

𝑓𝑛 𝑢, 𝜃

= argmin
𝜃

෍

𝑛

min
𝑢𝑛

𝑓𝑛 𝑢𝑛, 𝜃



෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑡
𝑓𝑛 𝑢, 𝜃

= argmin
𝜃

෍

𝑛

min
𝑢𝑛

𝑓𝑛 𝑢𝑛, 𝜃

= argmin
𝜃

min
𝑢1..𝑁

෍

𝑛

𝑓𝑛 𝑢𝑛, 𝜃

[Recall that:      min
𝑥

𝑓 𝑥 +min
𝑦

𝑔(𝑦) = min
𝑥,𝑦

𝑓 𝑥 + 𝑔(𝑦)]



SUMMARY: TWO METHODS, SAME OBJECTIVE෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝒖

𝑓𝑛 𝑢, 𝜃

 Nasty objective

 𝑀 parameters

 Cost per iteration 𝑂 𝑁

Slow

෠𝜃 = argmin
𝜃

min
𝒖1..𝑁

෍

𝑛

𝑓𝑛 𝑢𝑛, 𝜃

 Simple objective (no “min”)

 𝑀 +𝑁 parameters

 Cost per iteration 𝑂(𝑁𝑀𝑟)

Fast

(in actual real-world wall clock time, even for very large 𝑁)



CONVERGENCE RATES

ICP, a bad 1st-order method A second order method, slowed down 10x



WHAT IS A SURFACE?
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0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

CURVES

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)
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 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

SURFACE 135

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣



 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

 Probably not all of ℝ2, but a subset Ω

 E.g. square Ω = 0,2𝜋 × [0,𝐻]

 But also any union of patch domains Ω = ሪ
𝑝
Ω𝑝

SURFACE 136

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣



 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

 Probably not all of ℝ2, but a subset Ω

 E.g. square Ω = 0,2𝜋 × [0,𝐻]

 But also any union of patch domains Ω = ሪ
𝑝
Ω𝑝

 And we’ll look at parameterised surfaces 𝑆 𝒖; Θ

 E.g. Cylinder 𝑆 𝑢, 𝑣; 𝑅, 𝐻 = 𝑅 cos 𝑢 , 𝑅 sin 𝑢 , 𝐻𝑣
with Ω = 0,2𝜋 × 0,1

 E.g. subdivision surface 𝑆 𝒖; 𝑋
where Θ = 𝑋 ∈ ℝ3×𝑛 is matrix of control vertices

SURFACE 137

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣



TOOL: SUBDIVISION SURFACES
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CONTROL MESH 139

Control mesh vertices  𝑋 ∈ ℝ3×𝑚

Here 𝑚 = 16



LIMIT SURFACE 140

Control mesh vertices  𝑋 ∈ ℝ3×𝑚

Here 𝑚 = 16



SUBDIV RULE: STEP 1. ADD NEW VERTICES 141



SUBDIV RULE: STEP 2. AVERAGE NEIGHBOURS 142



2  SUBDIVISIONS 143



3  SUBDIVISIONS 144



LIMIT SURFACE 145

Control mesh vertices 𝑉 ∈ ℝ3×𝑚

Here 𝑚 = 16
Blue surface is 𝑀 𝒖;𝑉 | 𝒖 ∈ Ω
Ω is the grey surface



CONTROL VERTICES DEFINE THE SHAPE 146

Control mesh vertices 𝑉 ∈ ℝ3×𝑛

Here 𝑛 = 16
Blue surface is 𝑀 𝒖;𝑉 | 𝒖 ∈ Ω
Ω is the grey surface



 Mostly, 𝑀 is quite simple:

𝑀 𝒖;𝑋 = 𝑀 𝑡, 𝑢, 𝑣; 𝒙1, … , 𝒙𝑛 = ෍
𝑖+𝑗≤4
𝑘=1..𝑛

𝐴𝑖𝑗𝑘
𝑡 𝑢𝑖𝑣𝑗𝒙𝑘

 Integer triangle id 𝑡
 Quartic in 𝑢, 𝑣
 Linear in 𝑋
 Easy derivatives

 But…
 2nd Derivatives unbounded although normals well defined
 Piecewise parameter domain

SUBDIVISION SURFACE: PARAMETRIC FORM 147



EXAMPLES 148



BACK TO DOLPHINS
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MODEL REPRESENTATION

𝑋𝑛 = ෍

𝑘=0

𝐾

𝛼𝑖𝑘ℬ𝑘

𝛼𝑖1 ℬ1 𝛼𝑖2 ℬ2+ +𝑋𝑖 =

Linear blend shapes: 
Image 𝑖 represented by coefficient 
vector 𝜶𝑖 = 𝛼𝑖1, … , 𝛼𝑖𝐾

ℬ0
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𝒔𝑖𝑗 2D point

𝒏𝑖𝑗 2D normal

DATA TERMS

Image 𝑖

𝒖𝑖𝑗 Contour generator

preimage in 𝛀
(unknown)

c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖
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𝒔𝑖𝑗 2D point

𝒏𝑖𝑗 2D normal

DATA TERMS

Image 𝑖

𝒖𝑖𝑗 Contour generator

preimage in 𝛀
(unknown)

c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖
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DATA TERMS

Image 𝑖

𝒔𝑖𝑗 , 𝒏𝑖𝑗

159

Camera 
position

Silhouette:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖

𝒔𝑖𝑗 − 𝜋 𝜃𝑖 , 𝑀 𝑢𝑖𝑗 , 𝑿𝑖
2

Normal:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖
𝒏𝑖𝑗
0

− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗 , 𝑿𝑖
2

Projection
e.g. Perspective



DATA TERMS

Image 𝑖

𝒔𝑖𝑗 , 𝒏𝑖𝑗

Linear Blend Shapes (PCA) Model:

𝑿𝑖 =෍

𝑘

𝛼𝑖𝑘𝑩𝑘

160

Silhouette:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖

𝒔𝑖𝑗 − 𝜋 𝜃𝑖 , 𝑀 𝑢𝑖𝑗 , 𝑿𝑖
2

Normal:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖
𝒏𝑖𝑗
0

− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗 , 𝑿𝑖
2



Data fidelity 
terms

𝑝 𝐼 𝑋𝑖; 𝑈

Gaussian shape 
weights

Smooth 
contour

Smooth Basis
𝑝 𝚯
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CONTINOUSOPTIMIZATION

 Can focus on this term to understand entire 
optimization.

 Total number of residuals 𝑛 = number of silhouette points.  
Say 300𝑁 (𝑁 = number of images) ≈ 10,000

 Total number of unknowns 2𝑛 + 𝐾𝑁 +𝑚 where 
𝑚 ≈ 3𝐾 × number of vertices ≈ 3,000
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INITIAL ESTIMATE FOR MEAN SHAPE

This is true, but misleading

164



INITIAL ESTIMATE FOR MEAN SHAPE

True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.
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INITIAL ESTIMATE FOR MEAN SHAPE

True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.
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EXAMPLE RESULTS 168



EXAMPLE RESULTS 169



OPTIMIZATION 170



NUMBER OF IMAGES 171

8 16 32



PARAMETER SENSITIVITY
“Pixel” terms: noise level params “Dimensionless” terms “Smoothness” terms

𝐸 = σ𝑖=1
𝑛 𝐸𝑖

sil + 𝐸𝑖
norm + 𝐸𝑖

con + σ𝑖=1
𝑛 𝐸𝑖

cg
+ 𝐸𝑖

reg
+   𝝃𝟎

𝟐𝐸0
tp
+ 𝝃𝐝𝐞𝐟

𝟐 σ𝑖=1
𝑛 𝐸𝑚

tp
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[BLACK AND RANGARANJAN, CVPR 91] – NEARLY
[LI, PAULY, SUMNER, SIGGRAPH 08] – NEARLY
[ZOLLHÖFER, SIGGRAPH 14] — BASICALLY 
[ZACH, ECCV 14]  — DEFINITELY

Robust estimation
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𝑦 = 𝑎𝑥 + 𝑏
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𝑦 = 𝑎𝑥 + 𝑏
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But I have “outliers” 



How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎1𝑥 + 𝑎2 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2
2



How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎1𝑥 + 𝑎2 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2
2

>> a = lsqnonlin(@(a) y – a(1)*x – a(2), [1 1]);

Works really well because objective is sum-of-squares



How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎𝑥 + 𝑏 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 =?

But I have “outliers” 



How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎𝑥 + 𝑏 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖𝜓 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

>> a = fminunc(@(a) sum(psi(y – a(1)*x – a(2))), [1 

1]);

𝜓 𝑥



min
𝒂

෍

𝑖

𝜓 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

Global minimum in a good place

But hard to optimize:
• Multiple optima
• Huge flat spots



Robust kernels can be expressed as minimization 
over “outlier process” variables [e.g. Geman & 
Reynolds ‘92, Black & Rangarajan ‘95]

𝜙 𝑥,𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2

𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤



Data residual for 𝑖th data point: 𝑓𝑖 𝒂 = 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

“Lifted” robust kernel: 𝜙 𝑥,𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2

Gives kernel: 𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤

And original nasty problem: min
𝒂

σ𝑖𝜓 𝑓𝑖(𝒂)

Becomes: min
𝒂

σ𝑖min𝑤
𝑤2𝑓𝑖

2 𝒂 + 1 − 𝑤2 2

min
𝒂

σ𝑖min𝑤𝑖

𝑤𝑖
2𝑓𝑖

2 𝒂 + 1 − 𝑤𝑖
2 2

min
𝒂

min
𝑤𝑖

σ𝑖𝑤𝑖
2𝑓𝑖

2 𝒂 + 1 − 𝑤𝑖
2 2

Which is in the Gauss-Newton form…
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𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤 [Zöllhofer et al ’14]

𝜙 𝑥, 𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2 [Li, Sumner, Pauly ’08]

Red: Tukey’s biweight
Blue: “Lifted” kernel 𝝍

𝜓 𝑥 = min
𝑤

𝑤2𝑥2 + 1 − 𝑤2 2 = 𝑓 𝑥 = ൞

𝑟2

2
2 −

𝑟2

2
, 𝑥 < 0

1, 𝑥 ≥ 0

𝜓 𝑥

𝑥 𝑥

𝑤



Where lifting really helps



Before [Zach ’14], no-one used the Gauss-Newton structure, so never beat IRLS (iterated 
reweighted least squares), with its ICP-like convergence.

3D reconstruction datasets: up to 106 parameters, 106 measurements
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AUTODIFF

A Benchmark of Selected Algorithmic Differentiation Tools on AD 2016
Some Problems in Machine Learning and Computer Vision
Filip Srajer, Zuzana Kukelova, Andrew Fitzgibbon
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SUBDIV PECULIARITIES 1: PIECEWISE DOMAIN

199



PIECEWISE DOMAIN 200

 Parameter 
domain Ω is in 
pieces

 Typically not 
unwrappable to a 
plane

A

A

B

B



 Parameter domain Ω: pieces with connectivity graph

PIECEWISE DOMAIN



PIECEWISE DOMAIN 202

 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Easy to get direction 𝜹
from 𝑀𝒖 etc.

 But need 𝒖 + 𝜆𝜹
 Override ceres::Evaluator::Plus

 Easy inside patch

 Need outside too

𝒖
𝜹

𝒖

𝜹



 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Need 𝒖 + 𝜆𝜹

 Outside patch:
 Move distance 𝜏 to edge

 Change direction

 Move 𝛿 − 𝜏

 Repeat in next patch

PIECEWISE DOMAIN 203

𝒖
𝜹

𝒖

𝜹



 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Need 𝒖 + 𝜆𝜹

 Outside patch:
 Move distance 𝜏 to edge

 Change direction

 Move 𝛿 − 𝜏

 Repeat in next patch

PIECEWISE DOMAIN 204

𝒖

𝒖 + 𝜹

𝝉

𝝉′

𝒖 + 𝜹

𝒖



𝐸 𝒖 = 𝒔 −𝑀 𝒖, 𝑋 2

EXAMPLE: SINGLE CLOSEST POINT PROBLEM

𝒔



EXAMPLE: SINGLE CLOSEST POINT PROBLEM

𝒔𝐸 𝒖 = 𝒔 −𝑀 𝒖, 𝑋 2



SUBDIV PECULIARITIES 2: EXTRAORDINARY VERTICES

207



 Any vertex of valency ≠ 6 is an “extraordinary vertex”
 Call a triangle with an EV an “irregular triangle”

 Normals and surface at EVs well defined and well 
behaved
 But spline evaluation rule is not…

 Solution: virtually subdivide irregular triangles
 Each green element is still linear in 𝑋, quartic in 𝑢, 𝑣

 Need to generate different 𝐴𝑖𝑗𝑘 for σ𝐴𝑖𝑗𝑘𝑢
𝑖𝑣𝑗𝑿𝑘

 All autogenerated C code using Sympy
 Go to depth 5, and then handle “vestigial patch”

 Initially just use spline coeffs from neighbour

EXTRAORDINARY VERTICES 208

𝐸𝑉





SUBDIV PECULIARITIES 2: VANISHING DERIVATIVES

210



“Neighbour extrapolation” for vestigial patch looks OK visually, 
but EVs have other issues:

 Vanishing first derivatives: lim
𝒖→𝐸𝑉

𝑀𝒖 𝒖,𝑋 = 𝟎

 Saddle point for gradient-based optimization.

 Unbounded second derivatives

 Infinite thin-plate energy (inconvenience).

 Derivatives with respect to normal, although well defined, are 
unstable using chain-rule (inconvenience).

 Solutions

 Reparameterise the function near the extraordinary vertex.

 Replace the function near the extraordinary vertex.

THE VESTIGIAL PATCH

𝐸𝑉



REPARAMETERISING TO FIX DERIVATIVES

Example bad parameterization: 

𝒎 𝑠 = 𝑥, 𝑦 = 𝑠, sin 𝑠 𝑠 ∈ ℝ+

𝐦′ s =
d𝒎

d𝑠
𝑠 =

1

2 𝑠
,
cos 𝑠

2 𝑠

⇒ lim
𝑠→0

𝒎′(𝑠) → (∞,∞)

Reparameterise 𝑠 = 𝑡2

𝒎 𝑡 = 𝑥, 𝑦 = 𝑡, sin 𝑡

𝒎′ 𝑡 =
d𝒎

d𝑡
𝑡 = 1, cos 𝑡

⇒ lim
𝑡→0

𝒎𝑡(𝑡) → (1,1)



WHERE LIFTING REALLY HURTS …



WHERE LIFTING REALLY HURTS

 Bundle adjustment

min
𝑈1..𝑁

min
𝑉1..𝑀

෍

𝑖,𝑗∈𝑆

𝜓 𝒎𝑖𝑗 − 𝜋 𝑈𝑖
⊤𝑉𝑗

 Sum over set of camera-point 
observations 𝑆

 Robust kernel 𝜓

 Nonlinear projection 𝜋:ℝ3 ↦ ℝ



WHERE LIFTING REALLY HURTS

 Bundle adjustment

min
𝑈1..𝑁

min
𝑉1..𝑀

෍

𝑖,𝑗∈𝑆

𝜓 𝒎𝑖𝑗 − 𝜋 𝑈𝑖
⊤𝑉𝑗

 Sum over set of camera-point 
observations 𝑆

 Robust kernel 𝜓

 Nonlinear projection 𝜋:ℝ3 ↦ ℝ

Success rate: 0.1%



WHERE LIFTING REALLY HURTS

 Bundle adjustment

min
𝑈1..𝑁

min
𝑉1..𝑀

෍

𝑖,𝑗∈𝑆

𝒎𝑖𝑗 − 𝜋 𝑈𝑖
⊤𝑉𝑗

2

 Sum over set of camera-point 
observations 𝑆

 Robust kernel 𝜓

 Nonlinear projection 𝜋:ℝ3 ↦ ℝ

Success rate: 1%



WHERE LIFTING REALLY HURTS

 Bundle adjustment

min
𝑈1..𝑁

min
𝑉1..𝑀

෍

𝑖,𝑗∈𝑆

𝒎𝑖𝑗 − 𝑈𝑖
⊤𝑉𝑗

2

 Sum over set of camera-point 
observations 𝑆

 Robust kernel 𝜓

 Nonlinear projection 𝜋:ℝ3 ↦ ℝ

Success rate: 10%

[0-30% depending on 
some stuff]



WHERE LIFTING REALLY HURTS

 Which is just matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

Success rate: ?%



1. Unified derivation of methods
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inputs: M, W, r, U, 𝜆0
𝜆 ← 𝜆0
෩W ← diag vec W with zero-rows removed.

෥𝐦 ← ෩W vec M
repeat

𝐠 ← V∗ U ⊤vec UV∗ U ⊤ −M // for all algorithms listed here.

• • • • • • • • • • • • • • • • 1: H ← V∗⊤V∗

• • • • • • • • • • • • • • 2: H ← H − ෩V∗
⊤෩U෩U†෩V∗

• • • • 3: H ← H + K𝑚𝑟
⊤ Z∗ ෩U⊤෩U

−1
Z∗⊤K𝑚𝑟

• • • 4: H ← H − K𝑚𝑟
⊤ Z∗ ෩U⊤෩U

−1
Z∗⊤K𝑚𝑟 + K𝑚𝑟

⊤ Z∗෩U†෩V∗ + ෩V∗
⊤෩U†

⊤
Z∗⊤K𝑚𝑟

5: P ← I⊗ I − UU⊤ ∈ ℝ𝑚𝑟×𝑚𝑟 // (5) is also a no-operation if 7 and 8 are.

• • • 6: P ← I⊗ U⊥
⊤ ∈ ℝ 𝑚−𝑟 𝑟×𝑚𝑟

• • • 7: 𝐠 ← P𝐠 // (7) is a no-operation since 𝐠 = P𝐠.

• • • 8: H ← PHP⊤ // (8) is a no-operation since H = PH.

• • • 9: H ← H + I⊗ UU⊤ // relaxed constraint to promote U⊤ΔU = 0.

• • • • • • • • • • • • • • 10: repeat

• • • 11: ΔU ← unvec H−1𝐠
• • • • • • • • • • • • • 12: ΔU ← unvec H + 𝜆I −1𝐠
• • • • • • • • • • • • • 13: 𝜆 ← 𝜆 ∗ 10

• • • • • • • • • • • • • • 14: until 𝑓 U + ΔU, V∗ U + ΔU < 𝑓 U, V∗(U)
• • • • • • • • • • • • • • • • 15: U ← U+ ΔU

• • 16: U ← 𝑞𝑓 U // [U,~]=qr(U,0) in MATLAB.

• • • • • • • • • • • • • • • • 17: V ← unvec ෩U† ෥𝐦
• • • • • • • • • • • • • 18: 𝜆 ← 𝜆/100

until convergence

outputs: U, V



WHERE LIFTING REALLY HURTS

 Which is just matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

 We all know that given 𝑈,

𝑉∗ 𝑈 = 𝑈†𝑀
⊤

this is how you get alternation/ICP:
1. 𝑈 = 𝑈∗ 𝑉 ;

2. 𝑉 = 𝑉∗ 𝑈 ;

Success rate: 0%



WHERE LIFTING REALLY HURTS

 Matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

𝑉∗ 𝑈 = 𝑈†𝑀
⊤

 … so “unlift”:

min
𝑈∈ℝ𝑀×𝐾

𝑀 −𝑈𝑈†𝑀
2

Success rate: ?%



WHERE LIFTING REALLY HURTS

 Matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

𝑉∗ 𝑈 = 𝑈†𝑀
⊤

 … so “unlift”:

min
𝑈∈ℝ𝑀×𝐾

𝑀 −𝑈𝑈†𝑀
2

 Compute gradient:
𝜕𝐴†

𝜕𝑥
= −𝐴†

𝜕𝐴

𝜕𝑥
𝐴† +⋯ (see supmat)

Success rate: 50%

This is [Wiberg ’73] 
or “VarProGN” [Ruhe
& Wedin ’84]



WHERE LIFTING REALLY HURTS

 Matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

𝑉∗ 𝑈 = 𝑈†𝑀
⊤

 … so “unlift”:

min
𝑈∈ℝ𝑀×𝐾

𝑀 −𝑈𝑈†𝑀
2

 And move to Levenberg-Marquardt 
instead of GN, and fix some other stuff

Success rate: 97%

[Okatani ’11, Hong & 
Fitzgibbon ‘15] 
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13 standard datasets
24 algorithms

From how many of 100 random 
starting points does algorithm 𝑋
reach the best known optimum?

Green=100
Blue =0
Grey=timeout
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A “new” algorithm: RUSSO-𝑋

Run algorithm 𝑋 from random 
starting points until you see the 
same optimum twice.

while true
fmin := X(M, rand(…))
if fmin < best_so_far

best_so_far := 
fmin

else if fmin = 
best_so_far

success!
end
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So speed is all that matters.  How can we measure it fairly?
Re-implement everything, faster and more accurate than original authors.



Lifting and VarPro are almost exact opposites

 In much of my previous work, lifting helped

 In [Zach, ECCV ’14], VarPro was drastically worse

 In [Okatani ’11] VarPro is dramatically better

Everything else is detail: numerics, manifold projection, 
Hessian approximations, …

CONCLUSION 230



 Using subdivs is easy
 The messy stuff is encapsulated in Eval_M*(), and Plus()

 Google’s “Ceres” solver does all the Levenberg-Marquardt

 Continuous optimization often doesn’t need a very good 
initial estimate

 Using subdivs allows correspondences 𝒖𝑖 to update during 
the optimization
 If ICP takes a long time, this may not…

 But you must exploit sparsity

 Future work:
 Dogs, hinted ARAP, skeleton, even more speed, …

CONCLUSIONS ETC 231



 Seen a few students nastily bitten by collapsing meshes

 So what’s changed?  How do I get bitten by the bug, not the hornet?
1. Sum over data, not model

2. Use modern (2006) regularizers

3. Vary everything

4. Define clean interpolants

FITTING MESHES 232



CONCLUSIONS 233

• Finite diffs fine, just expensive
• Myths: you don't need to find the optimum
• Parameter tuning
• Constrained optimization


