
Fitting Surface Models to Data

1

CVPR 2016 Tutorial

Andrew Fitzgibbon, Microsoft
Jonathan Taylor, PerceptiveIO

0900 Intro: Applications in vision and graphics.

• Kinetre (Siggraph 12)
• Dolphins (PAMI 13)
• Nonrigid tracking (Siggraph 14)
• FlexSense (CHI 15)
• Hand tracking (Siggraph 16)

Lots of exciting and inspirational examples of model fitting:

0920 Session I: Matrix and vector calculus, nonlinear optimization

vector functions and the Jacobian, generalized Jacobian•
advanced matrix operations: block operations, kronecker products etc•
derivatives of matrix expressions•
sparse matrices and sparse storage•
finite-difference versus symbolic derivatives•
nonlinear optimization, Gauss-Newton and Levenberg-Marquardt algorithms•
gradient descent vs Newton•
linear vs quadratic convergence•

1030 Coffee

1045 Session II: Curves and Correspondences

What is a curve? Parametric descriptions of curves and surfaces•
Curves and data points: closest point operations•
Fitting curves to data: correspondences•
Iterated closest points•
“Lifting” correspondences•
Worked example: Gauss's Ceres problem•

1140 Break and stretch

1145 Session III: Surfaces

Splines and subdivision surfaces in 3D•
Optimizing with subdivision•
Implementing for speed•

1230 Lunch

1400 Session IV: Robustness and speed

Models•
LBS, blendshapes, NURBS, lower order…•
Priors/smoothers/convergers•
ARAP•
Background - DT ok for tracking, not for personalization•
Priors on correspondences, e.g. piecewise continuous contour
generator

•

Exposing Structure in Sum of Squares Form•

Robust terms•
square root trick•
A great example of where “lifting” really helps•

Error metric•

1500 Coffee/Stretch

1515 Session V: Software

OpenSubdiv•
Eigen•
Ceres•
Opt (Guest lecture from Matthias Niessner)•
AD tools: Theano etc•

1615 More coffee, more stretching

1630 Session VI: Conclusions, open problems, misc…

Topology adaptation•
Where are the local minima?•
And where lifting really hurts: VarPro algorithms•
Implementing rotations: quaternions vs infinitesimals with recentering•
derivatives of minimization problems•
Schur complement QR•

1715 Close

http://awf.fitzgibbon.ie/cvpr16_tutorial

PEOPLE

Finding Nemo: Deformable Object Class Modelling using Curve Matching CVPR ’10
Mukta Prasad, Andrew Fitzgibbon, Andrew Zisserman, Luc Van Gool

KinÊtre: Animating the World with the Human Body UIST ’12
Jiawen (Kevin) Chen, Shahram Izadi, Fitzgibbon

The Vitruvian Manifold: Inferring dense correspondences for one-shot human pose estimation CVPR ’12
Jonathan Taylor, Jamie Shotton, Toby Sharp, Fitzgibbon

What shape are dolphins? Building 3D morphable models from 2D images PAMI ’13
Tom Cashman, Fitzgibbon

User-Specific Hand Modeling from Monocular Depth Sequences CVPR ’14
Taylor, Richard Stebbing, Varun Ramakrishna, Cem Keskin, Shotton, Izadi, Fitzgibbon, Aaron Hertzmann

Real-Time Non-Rigid Reconstruction Using an RGB-D Camera SIGGRAPH ’14
Michael Zollhöfer, Matthias Nießner, Izadi, Christoph Rhemann, Christopher Zach,
Matthew Fisher, Chenglei Wu, Fitzgibbon, Charles Loop, Christian Theobalt, Marc Stamminger

Learning an Efficient Model of Hand Shape Variation from Depth Images CVPR ’15
Sameh Khamis, Taylor, Shotton, Keskin, Izadi, Fitzgibbon

Efficient and Precise Interactive Hand Tracking through Joint, Continuous Optimization of Pose SIGGRAPH ‘16
and Correspondences
Taylor, Lucas Bordeaux, Cashman, Bob Corish, Keskin, Sharp, Eduardo Soto, David Sweeney, Julien Valentin,
Ben Luff, Arran Topalian, Erroll Wood, Khamis, Kohli, Izadi, Richard Banks, Fitzgibbon, Shotton.

Fits Like a Glove: Rapid and Reliable Hand Shape Personalization. CVPR ’16
David Joseph Tan, Cashman, Taylor, Fitzgibbon, Daniel Tarlow, Khamis, Izadi, Shotton.

LEARN HOW TO SOLVE HARD VISION PROBLEMS,
USING TOOLS THAT MAY APPEAR INELEGANT,
BUT ARE MUCH SMARTER THAN THEY LOOK.

Goal

4

APPLICATIONS

Curve/surface fitting Parameter estimation “Bundle adjustment”
(Video from our friends at Google)

KINÊTRE 6

KINÊTRE 7

KINÊTRE 8

VITRUVIAN MANIFOLD, CVPR ’12

FITTING SUBDIVISION SURFACES TO 2D DATA

FITTING SUBDIVISION SURFACES TO 2D DATA

14

FITTING POLYGON MESHES TO VIDEO

16

[3D Scanning Deformable Objects with a Single RGBD Sensor, Dou et al, CVPR15]

Input Kinect Stream KinectFusion Deformable Fusion

REALTIME MESH FITTING TO 3D 17

[Zollhöfer &al, SIGGRAPH ’14]

FLEXSENSE (UIST 2015)

HAND TRACKING

• Hand Shape Personalization:
• CVPR 2014, CVPR 2015, CVPR 2016

• Discriminative Hand Pose Reinitialization
• ICCV 2015, CHI 2015

• Hand Pose Estimation via Model Fitting (read “Hand Tracking”)
• CHI 2015, SIGGRAPH 2016

IMAGE DENOISING 20[STRANDMARK & AGARWAL, 2014, arXiv:1403.5590]

MATRIX FACTORIZATION [HONG & F., ICCV 15]

MATRIX FACTORIZATION [HONG & F., ICCV 15]

MYTH: YOU DON’T NEED TO OPTIMIZE FAR 23

24

Write energy describing the image collection

𝑓=1

𝐹

𝐸data 𝐼𝑓 , 𝜽𝑓 + 𝐸reg 𝜽𝑓 , 𝜽core

Where:

𝜽𝑓 are (unknown) parameters of surface model in frame 𝑓

𝜽core are (unknown) parameters of some shape model (e.g. linear
combination) and 𝐸reg measures distance, e.g. ARAP

And optimize it using Levenberg-Marquardt

 (i.e. any Newton-like algorithm, making maximum use of problem
structure)

FOR EACH TASK, THE METHOD IS THE SAME 26

 So, you can do lots of things by “fitting models to
data”.

 How do you do it right?

 Let’s look at some examples.

27

CONTINUOUS
OPTIMIZATION

Andrew Fitzgibbon
Microsoft Research Cambridge

GOAL

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ,

Devise strategies for finding 𝑥 which minimizes 𝑓

• Gradient descent++: Stochastic, Block, Minibatch

• Coordinate descent++: Block

• Newton++: Gauss, Quasi, Damped, Levenberg Marquardt, dogleg, Trust
region, Doublestep LM, [L-]BFGS, Nonlin CG

• Not covered
• Proximal methods: Nesterov, ADMM…

CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓

CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓

32

quadratic

convex

quasiconvex

multi-
extremum

33

quadratic

convex

quasiconvex

multi-
extremum

Easy Hard

DERIVATIVES

Fast minimization depends on derivatives

 Gradient 𝑓:ℝ𝑛 ↦ ℝ

 When 𝑓 𝒙 = 𝑭 𝒙 2

𝑭:ℝ𝑛 ↦ ℝ𝑚

use Jacobian
𝜕𝑭

𝜕𝒙

34

EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

>> print -dmeta

EXAMPLE

>> print –dpdf % then go to pdf and paste
OR
>> set(findobj(1, 'type', 'line'), 'linesmoothing', 'on') % then screengrab

EXAMPLE

>> set(gcf, 'paperUnits', 'centimeters', 'paperposition', [1 1 9 6.6])
>> print –dpdf % then go to pdf and paste

SWITCH TO MATLAB…

ALTERNATION

Easy Hard

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

-5 0 5 10 15
-5

0

5

10

15

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

 Note that convergence
proofs are available for
both of the above

 But so what?

AND ON A HARD PROBLEM

USE A BETTER ALGORITHM

 (Nonlinear) conjugate
gradients

 Uses 1st derivatives only

 Avoids “undoing”
previous work

USE A BETTER ALGORITHM

 (Nonlinear) conjugate
gradients

 Uses 1st derivatives only

 And avoids “undoing”
previous work

 101 iterations on
this problem

BUT WE CAN DO BETTER…

USE SECOND DERIVATIVES…

 Starting with 𝒙 how can I choose 𝜹
so that 𝑓 𝒙 + 𝜹 is better than 𝑓(𝒙)?

 So compute
min
𝜹∈ℝ𝑑

𝑓 𝒙 + 𝜹

 But hang on, that’s the same problem we were trying to
solve?

USE SECOND DERIVATIVES…

 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 So compute
min
𝛿

𝑓 𝑥 + 𝛿

≈ min
𝛿

𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2𝛿

⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)

USE SECOND DERIVATIVES…

 How does it look?

𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2
𝛿⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹

𝑓 + 𝜹⊤𝑔 + 1
2𝜹

⊤𝐻 𝜹

[derive]

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹

𝑓 + 𝜹⊤𝑔 + 1
2𝜹

⊤𝐻 𝜹

𝜹 = −𝐻−1𝑔

IS THAT A GOOD IDEA?

>> use demos

>> demo_taylor_2d(0, 'newton', 'rosenbrock')

>> demo_taylor_2d(0, 'newton', 'sqrt_rosenbrock')

>> demo_taylor_2d(1, 'damped newton ls', 'rosenbrock')

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Updates:
𝜹Newton = −𝐻−1𝑔

𝜹GradientDescent = −𝜆𝑔

USE SECOND DERIVATIVES…

 Updates:
𝜹Newton = −𝐻−1𝑔

𝜹GradientDescent = −𝜆𝑔

 So combine them:
𝜹DampedNewton = − 𝐻 + 𝜆−1𝐼𝑑

−1𝑔

= −𝜆 𝜆𝐻 + 𝐼𝑑
−1𝑔

 𝜆 small ⇒conservative gradient step

 𝜆 large ⇒Newton step

UPDATING 𝜆

𝜆 = 10−3; 𝜆′ = 3;

while 𝜆 < 109

𝑓, 𝒈,𝑯 = error_function(𝒙𝑘) % Perhaps Gauss-Newton for H

𝜹 = − 𝑯+ 𝜆𝑰 \𝒈 % Many ways to do this efficiently

𝒙𝑛𝑒𝑤 = 𝒙𝑘 + 𝜹

if error_function(𝒙𝑛𝑒𝑤) < 𝑓:

𝒙𝑘 = 𝒙𝑛𝑒𝑤 % Decreased error, accept the new 𝑥

𝜆 = 𝜆/𝜆′; 𝜆′ = 3 % Doing well—decrease 𝜆

else

𝜆 = 𝜆𝜆′; 𝜆′ = 3𝜆′ % Doing badly—increase 𝜆 quick

1ST DERIVATIVES AGAIN

Levenberg-Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =

𝑖

𝑓𝑖 𝑥
2

 where 𝑓𝑖(𝑥) are

 zero-mean

 small at the optimum

BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =

𝑖

𝑓𝑖 𝑥
2

𝛻𝑓 𝑥 =

𝛻𝛻⊤𝑓 𝑥 =

BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =

𝑖

𝑓𝑖 𝑥
2

𝛻𝑓 𝑥 =

𝑖

2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)

𝛻𝛻⊤𝑓 𝑥 = 2

𝑖

𝑓𝑖 𝑥 𝛻𝛻⊤𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻
⊤𝑓𝑖 𝑥

ORDER N CUBED?

 Not 𝑂 𝑛3 if you exploit sparsity of Hessian or
Jacobian

J =
𝛻𝑓1(𝑥)

⋮
𝛻𝑓𝑛(𝑥)

TYPICAL HESSIAN STRUCTURE

CONCLUSION: YMMV

CONCLUSION: YMMV

GIRAFFE

500 runs

for k=1:500
𝑥0 = 𝑟𝑎𝑛𝑑𝑛 𝑛, 1 ;
𝑥∗ = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓, 𝑥0 ;
𝐸 𝑘 = 𝑓 𝑥∗

end
plot(sort(E));

CONCLUSION: YMMV

FACE

1000 runs

DINOSAUR

1000 runs

GIRAFFE

500 runs

 On many problems,
alternation is just fine
 Indeed always start with a

couple of alternation steps

 Computing 2nd derivatives is
a pain
 But you don’t need to for LM

 But just alternation is not
 Unless you’re willing to

problem-select

 Convergence guarantees
are fine, but practice is
what matters

 Inverting the Hessian is
rarely 𝑂(𝑛3)

There is no universal optimizer

ON FINITE-DIFFERENCE DERIVATIVES

 𝛻𝑓 =
1

𝜇

𝑓 𝑥 + 𝑒1 − 𝑓(𝑥)
⋮

𝑓 𝑥 + 𝑒𝑑 − 𝑓(𝑥)

 Surprisingly accurate for e.g. 𝜇 = 10−5 (in double prec.)

 Incredibly slow.. Unless (see next slide)

 Useful for checking your analytic derivatives

 Incredibly slow. Try Powell or Simplex instead.

 Central differences twice as slow, somewhat more accurate

GRAPH COLOURING FOR FINITE DIFFS

 Normally try 𝑒1 to 𝑒𝑑 sequentially

 But if we know the nonzero structure of the Jacobian,
can go rather faster.

67

ON SCALING

 We’re minimizing 𝑓(𝑥)

 Many algorithms will be happier if entries of 𝑥 are all
“around 1”.

 E.g. don’t have angle in degrees and distances in km

 Many algorithms may want 𝑓 values to be “close to
𝑥 or close to zero at the optimum”.

 Specifically, think about roundoff in quantities like 𝑓 𝑥𝑘+1 −
𝑓 𝑥𝑘 being compared to numbers like 10−6

QUESTIONS

 What about stochastic gradient descent?

 You can do analogous 2nd order things.

 What about LBFGS?

 I haven’t had much success with it, other folk love it…

 I tried lsqnonlin and it was really slow—why?

 Wrong derivatives (e.g. finite-differences)

 Didn’t use sparsity correctly

 Didn’t set “options.Algorithm” or “options.LargeScale”.

 Resources:

1. Matlab fminsearch and fminunc documentation

2. awful.codeplex.com au_optimproblem

3. Tom Minka webpage on matrix derivatives

4. Google “ceres” solver

5. UTorono “Theano” system for Python

 Gotchas with lsqnonlin
 opts.LargeScale = 'on';

 opts.Jacobian = 'on';

 Need non-rank-def J?

 Need to implement JacobMult?

CONVERGENCE CURVES, ONE INSTANCE

10
-1

10
0

10
1

10
2

10
3

10
-1.4

10
-1.3

10
-1.2

10
-1.1

Time (sec)

Er
ro

r

CONVERGENCE CURVES, ONE INSTANCE

10
-1

10
0

10
1

10
2

10
3

10
-1.4

10
-1.3

10
-1.2

10
-1.1

Time (sec)

Er
ro

r

10
2

10
3

10
4

10
5

10
6

10
-2

10
0

10
2

O(n)O(n
2
)

Number of data points

Ti
m

e
(s

ec
)

Timings for n-point ellipse fit

fdgrad cp

simplex marg

5+n ad lbfgs

5+n ad noHess

5+n ad Hess

5+n LSQ lev-marq

Hsampson

sampson

EXAMPLE: SHAPE FITTING

76

SHAPE QUIZ 77

SHAPE QUIZ 78

t = 0:.01:2;

plot(cos(t)*2, sin(t));

SHAPE QUIZ 79

t = 0:.01:2;

plot(cos(t)*2, sin(t));

SHAPE QUIZ 80

>> u = 0:.1:2*pi; v= 0:.1:2*pi;
>> l = ones(size(v));
>> u = u'*l;
>> v = l'*v;
>> plot3(cos(u), sin(u), v, 'k.')

SHAPE QUIZ 81

>> u = 0:.1:2*pi; v= 0:.1:2*pi;
>> l = ones(size(v));
>> u = u'*l;
>> v = l'*v;
>> plot3(cos(u), sin(u), v, 'k.')

What is a shape?
• Functions

• Curves

• Surfaces

82

A SHAPE IS A FUNCTION

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

83

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

A SHAPE IS A FUNCTION

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

84

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

SHAPES DESCRIBE DATA85

SHAPES DESCRIBE DATA86

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

SHAPES DESCRIBE DATA87

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = sin 𝑥 + 𝑎𝑥 + 𝑏

SHAPES DESCRIBE DATA88

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = if 𝑥 < 𝑎
𝑥 − 𝑏 2 + 𝑐

else
− 𝑥 − 𝑑 2 + 𝑒

A SHAPE IS A FUNCTION89

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

FUNCTIONS OVER DOMAINS Ω

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

90

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

CURVES

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

91

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

PARAMETERIZED SHAPES

abstract Curve {

method eval(t::Interval)::Point2D

};

92

PARAMETERIZED SHAPES93

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

abstract Curve {

method eval(t::Interval)::Point2D

};

type Conic < Curve {

eval(t) =

Point2D(t^2 + 2, t^2 – t + 1)

};

PARAMETERIZED SHAPES

abstract Curve {

method eval(t::Interval)::Point2D

};

type Conic < Curve {

ϴ::Real[]; // Shape parameters

eval(t) =

Point2D(ϴ[0]*t^2 + ϴ[1]*t + ϴ[2],

ϴ[3]*t^2 + ϴ[4]*t + ϴ[5])

};

Conic([1,0,2,1,-1,1])

94

2 2.2 2.4 2.6 2.8 30.75

0.8

0.85

0.9

0.95

1

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

95

closest point

x

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

distance(x) = norm(x – this.closest_point(x))

96

closest
point

x

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

distance(x) =

minimize(λ(t) norm(this.eval(t) – x), 0.0)

97

closest
point

x

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

...

function f(t) = norm(this.eval(t) – x)^2

distance(x) = minimize(f, Interval::Min)

function minimize(f, t)

while not converged

t -= 𝜶 * f’(t) // Compute derivative

98

closest
point

x

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method eval’(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

99

closest
point

x

𝑦 = if 𝑡 < 𝑎
𝑡 − 𝑏 2 + 𝑐

else
𝑓 𝑡 − 𝑑 2 + 𝑒

𝑦′ = if 𝑡 < 𝑎
2(𝑡 − 𝑏)

else
2𝑓(𝑡 − 𝑑)

Shape, meet thy data

100

min
𝜃

𝑛=1

𝑁

𝐶 𝜃 . closest_point(𝒔𝒏)

Sum-of-min problems

𝒔𝑛

A MORE GENERAL PROBLEM CLASS

AN EXEMPLARY PROBLEM

102

“Based on a true story”, not necessarily historically accurate

Note well: this problem is a good proxy for much more realistic problems:

1. Stereo camera calibration

2. Multiple-camera bundle adjustment

3. Surface fitting, e.g. subdivision surfaces to range data, realtime hand tracking

4. Matrix completion

5. Image denoising.

[Inspired by Neil Lawrence’s professorial inaugural]

AN EXEMPLARY PROBLEM

The year: 1801
The hot topic: A “guest planet”, named Ceres
The big question: Where will it reappear?

AN EXEMPLARY PROBLEM

AN EXEMPLARY PROBLEM

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Sample 𝒔𝑛

WE KNOW THE EXACT FORM OF THE MODEL 106

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Known model: Points lie on an ellipse

Clear(ish) objective:
Estimate the ellipse parameters, intersect with circle of sun, achieve fame

AND ESTIMATING IT WELL GETS US CLOSE… 107

RUNNING AN OFF-THE-SHELF FITTER DOES NOT. 108

“Direct least squares fitting of ellipses”
[Fitzgibbon et al, 1999]

Does not minimize “sum of distances”
objective, but a “nearby” convex objective

WE KNOW THE EXACT FORM OF THE MODEL 109

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at unknown times 𝑡𝑛

Known model: Points lie on an ellipse
𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Sample 𝒔𝑛

A PARAMETRIC FUNCTION AND A CURVE 110

A parametric description

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Defines a curve (a set of points in ℝ2)

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

Potential confusion: curve parameter 𝑡 and
shape parameter vector 𝜽. This should be ok for
this talk.

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

DISTANCES AND CLOSEST POINTS 111

Sample 𝒔𝑛

All our algorithms will start with a guess of 𝜽 and
refine it.

We will often want to think about the distance of
a sample 𝒔 from the curve 𝐶(𝜽).

Often, closest point is appropriate.
[Others easily handled too.]

𝐷 𝒔, 𝜽 ≔ min
𝒙∈𝐶 𝜽

𝒔 − 𝒙 2

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

A BETTER ESTIMATE 112

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Minimize over all ellipses 𝜽

𝜽∗ ≔ argmin
𝜽

𝑛

𝐷 𝒔𝑛, 𝜽

Just using an off-the-shelf optimizer.

113

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Sample 𝒔𝑛

AND ESTIMATING IT WELL GETS US CLOSE… 114

SO ARE WE DONE YET?

 We have an accurate solution
 Certainly better than the “closed form” algorithm, which minimized a “nearby” convex

objective.

 All we need to worry about now is speed…
 If you take 3 weeks to make a prediction, someone else will get the fame.

 Speed is everything. If speed didn’t matter, you would just use random search.

 Strategies to speed it up
 Attack the inner loop

 Remove discrete minimization in 𝐷(𝒔, 𝜽)

 Analyse the problem again

 Understand our tools: ‘fminunc’, or whatever we’re using

 Compute analytic derivatives

115

SPEED RESULTS: SNEAK PREVIEW

A slow method A fast method, slowed down 10x

SPEEDUP 1: ATTACK THE INNER
LOOP

117

SPEEDUP 1: ATTACK THE INNER LOOP 118

𝒔

SPEEDUP 1: ATTACK THE INNER LOOP 119

𝒔

𝐷 𝒔, 𝜽 = min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Define 𝐸(𝑡) = 𝒔 − 𝒄(𝑡; 𝜽) 2

Set
𝑑𝐸

𝑑𝑡
= 0

Yields 4th order polynomial, extract 4 roots.

Much cheaper than previous
implementation.

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

SPEEDUP 2: ANALYSE THE
PROBLEM

120

LOOK AT THE PROBLEM AGAIN 121

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Minimize over all ellipses 𝜽

𝑛

𝐷 𝒔𝑛, 𝜽 =

𝑛

min
𝑡

𝒔𝑛 − 𝒄 𝑡; 𝜽 2

Notice 𝒄 𝑡; 𝜽 is linear in 𝜽, so function is

=

𝑛

min
𝑡𝑛

𝒔𝑛 − 𝐴 𝑡𝑛 𝜽 2

And we can solve in closed form:
• for T = 𝑡𝑛 𝑛=1

𝑁 given 𝜽. Cost 𝑁 RootOfs.
• and 𝜽 given 𝑇. Cost one linear solve.

So alternate—“ICP”, “EM”, “Block Coordinate
Descent”

𝜽∗ ≔ argmin
𝜽

𝑛

𝐷 𝒔𝑛, 𝜽

bad decision…

122

CONVERGENCE RATES

ICP, a bad 1st-order method A second order method, slowed down 10x

CONVERGENCE CURVES

10
-1

10
0

10
1

10
2

10
3

10
-1.4

10
-1.3

10
-1.2

10
-1.1

Time (sec)

Er
ro

r

“Previous iteration” convergence test

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘−1 < 𝜏 will stop here.

“Half the time ago” convergence test

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘/2 < 𝜏 will stop here.

AH, BUT WHAT ABOUT TEST ERROR?

10
-1

10
0

10
1

10
2

10
3

10
-1.4

10
-1.3

10
-1.2

10
-1.1

Time (sec)

Er
ro

r

𝜃 = argmin
𝜃

𝑛=1

𝑁

min
𝑢

𝑓𝑛 𝑢, 𝜃

𝜃 = argmin
𝜃

𝑛=1

𝑁

min
𝑢

𝑓𝑛 𝑢, 𝜃

= argmin
𝜃

𝑛

min
𝑢𝑛

𝑓𝑛 𝑢𝑛, 𝜃

𝜃 = argmin
𝜃

𝑛=1

𝑁

min
𝑡
𝑓𝑛 𝑢, 𝜃

= argmin
𝜃

𝑛

min
𝑢𝑛

𝑓𝑛 𝑢𝑛, 𝜃

= argmin
𝜃

min
𝑢1..𝑁

𝑛

𝑓𝑛 𝑢𝑛, 𝜃

[Recall that: min
𝑥

𝑓 𝑥 +min
𝑦

𝑔(𝑦) = min
𝑥,𝑦

𝑓 𝑥 + 𝑔(𝑦)]

SUMMARY: TWO METHODS, SAME OBJECTIVE𝜃 = argmin
𝜃

𝑛=1

𝑁

min
𝒖

𝑓𝑛 𝑢, 𝜃

 Nasty objective

 𝑀 parameters

 Cost per iteration 𝑂 𝑁

Slow

𝜃 = argmin
𝜃

min
𝒖1..𝑁

𝑛

𝑓𝑛 𝑢𝑛, 𝜃

 Simple objective (no “min”)

 𝑀 +𝑁 parameters

 Cost per iteration 𝑂(𝑁𝑀𝑟)

Fast

(in actual real-world wall clock time, even for very large 𝑁)

CONVERGENCE RATES

ICP, a bad 1st-order method A second order method, slowed down 10x

WHAT IS A SURFACE?

133

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

CURVES

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

134

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

SURFACE 135

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣

 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

 Probably not all of ℝ2, but a subset Ω

 E.g. square Ω = 0,2𝜋 × [0,𝐻]

 But also any union of patch domains Ω = ሪ
𝑝
Ω𝑝

SURFACE 136

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣

 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

 Probably not all of ℝ2, but a subset Ω

 E.g. square Ω = 0,2𝜋 × [0,𝐻]

 But also any union of patch domains Ω = ሪ
𝑝
Ω𝑝

 And we’ll look at parameterised surfaces 𝑆 𝒖; Θ

 E.g. Cylinder 𝑆 𝑢, 𝑣; 𝑅, 𝐻 = 𝑅 cos 𝑢 , 𝑅 sin 𝑢 , 𝐻𝑣
with Ω = 0,2𝜋 × 0,1

 E.g. subdivision surface 𝑆 𝒖; 𝑋
where Θ = 𝑋 ∈ ℝ3×𝑛 is matrix of control vertices

SURFACE 137

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣

TOOL: SUBDIVISION SURFACES

138

CONTROL MESH 139

Control mesh vertices 𝑋 ∈ ℝ3×𝑚

Here 𝑚 = 16

LIMIT SURFACE 140

Control mesh vertices 𝑋 ∈ ℝ3×𝑚

Here 𝑚 = 16

SUBDIV RULE: STEP 1. ADD NEW VERTICES 141

SUBDIV RULE: STEP 2. AVERAGE NEIGHBOURS 142

2 SUBDIVISIONS 143

3 SUBDIVISIONS 144

LIMIT SURFACE 145

Control mesh vertices 𝑉 ∈ ℝ3×𝑚

Here 𝑚 = 16
Blue surface is 𝑀 𝒖;𝑉 | 𝒖 ∈ Ω
Ω is the grey surface

CONTROL VERTICES DEFINE THE SHAPE 146

Control mesh vertices 𝑉 ∈ ℝ3×𝑛

Here 𝑛 = 16
Blue surface is 𝑀 𝒖;𝑉 | 𝒖 ∈ Ω
Ω is the grey surface

 Mostly, 𝑀 is quite simple:

𝑀 𝒖;𝑋 = 𝑀 𝑡, 𝑢, 𝑣; 𝒙1, … , 𝒙𝑛 =
𝑖+𝑗≤4
𝑘=1..𝑛

𝐴𝑖𝑗𝑘
𝑡 𝑢𝑖𝑣𝑗𝒙𝑘

 Integer triangle id 𝑡
 Quartic in 𝑢, 𝑣
 Linear in 𝑋
 Easy derivatives

 But…
 2nd Derivatives unbounded although normals well defined
 Piecewise parameter domain

SUBDIVISION SURFACE: PARAMETRIC FORM 147

EXAMPLES 148

BACK TO DOLPHINS

149

MODEL REPRESENTATION

𝑋𝑛 =

𝑘=0

𝐾

𝛼𝑖𝑘ℬ𝑘

𝛼𝑖1 ℬ1 𝛼𝑖2 ℬ2+ +𝑋𝑖 =

Linear blend shapes:
Image 𝑖 represented by coefficient
vector 𝜶𝑖 = 𝛼𝑖1, … , 𝛼𝑖𝐾

ℬ0

150

151

152

154

𝒔𝑖𝑗 2D point

𝒏𝑖𝑗 2D normal

DATA TERMS

Image 𝑖

𝒖𝑖𝑗 Contour generator

preimage in 𝛀
(unknown)

c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖

157

𝒔𝑖𝑗 2D point

𝒏𝑖𝑗 2D normal

DATA TERMS

Image 𝑖

𝒖𝑖𝑗 Contour generator

preimage in 𝛀
(unknown)

c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖

158

DATA TERMS

Image 𝑖

𝒔𝑖𝑗 , 𝒏𝑖𝑗

159

Camera
position

Silhouette:

𝐸𝑖
𝑠𝑖𝑙 =

𝑗=1

𝑆𝑖

𝒔𝑖𝑗 − 𝜋 𝜃𝑖 , 𝑀 𝑢𝑖𝑗 , 𝑿𝑖
2

Normal:

𝐸𝑖
𝑠𝑖𝑙 =

𝑗=1

𝑆𝑖
𝒏𝑖𝑗
0

− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗 , 𝑿𝑖
2

Projection
e.g. Perspective

DATA TERMS

Image 𝑖

𝒔𝑖𝑗 , 𝒏𝑖𝑗

Linear Blend Shapes (PCA) Model:

𝑿𝑖 =

𝑘

𝛼𝑖𝑘𝑩𝑘

160

Silhouette:

𝐸𝑖
𝑠𝑖𝑙 =

𝑗=1

𝑆𝑖

𝒔𝑖𝑗 − 𝜋 𝜃𝑖 , 𝑀 𝑢𝑖𝑗 , 𝑿𝑖
2

Normal:

𝐸𝑖
𝑠𝑖𝑙 =

𝑗=1

𝑆𝑖
𝒏𝑖𝑗
0

− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗 , 𝑿𝑖
2

Data fidelity
terms

𝑝 𝐼 𝑋𝑖; 𝑈

Gaussian shape
weights

Smooth
contour

Smooth Basis
𝑝 𝚯

161

162

CONTINOUSOPTIMIZATION

 Can focus on this term to understand entire
optimization.

 Total number of residuals 𝑛 = number of silhouette points.
Say 300𝑁 (𝑁 = number of images) ≈ 10,000

 Total number of unknowns 2𝑛 + 𝐾𝑁 +𝑚 where
𝑚 ≈ 3𝐾 × number of vertices ≈ 3,000

163

INITIAL ESTIMATE FOR MEAN SHAPE

This is true, but misleading

164

INITIAL ESTIMATE FOR MEAN SHAPE

True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.

165

INITIAL ESTIMATE FOR MEAN SHAPE

True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.

166

167

EXAMPLE RESULTS 168

EXAMPLE RESULTS 169

OPTIMIZATION 170

NUMBER OF IMAGES 171

8 16 32

PARAMETER SENSITIVITY
“Pixel” terms: noise level params “Dimensionless” terms “Smoothness” terms

𝐸 = σ𝑖=1
𝑛 𝐸𝑖

sil + 𝐸𝑖
norm + 𝐸𝑖

con + σ𝑖=1
𝑛 𝐸𝑖

cg
+ 𝐸𝑖

reg
+ 𝝃𝟎

𝟐𝐸0
tp
+ 𝝃𝐝𝐞𝐟

𝟐 σ𝑖=1
𝑛 𝐸𝑚

tp

172

173

174

175

[BLACK AND RANGARANJAN, CVPR 91] – NEARLY
[LI, PAULY, SUMNER, SIGGRAPH 08] – NEARLY
[ZOLLHÖFER, SIGGRAPH 14] — BASICALLY
[ZACH, ECCV 14] — DEFINITELY

Robust estimation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑦 = 𝑎𝑥 + 𝑏
𝑥
𝑦 =

𝑎
𝑏

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑦 = 𝑎𝑥 + 𝑏
𝑥
𝑦 =

𝑎
𝑏

But I have “outliers”

How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎1𝑥 + 𝑎2 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2
2

How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎1𝑥 + 𝑎2 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2
2

>> a = lsqnonlin(@(a) y – a(1)*x – a(2), [1 1]);

Works really well because objective is sum-of-squares

How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎𝑥 + 𝑏 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 =?

But I have “outliers”

How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎𝑥 + 𝑏 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖𝜓 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

>> a = fminunc(@(a) sum(psi(y – a(1)*x – a(2))), [1

1]);

𝜓 𝑥

min
𝒂

𝑖

𝜓 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

Global minimum in a good place

But hard to optimize:
• Multiple optima
• Huge flat spots

Robust kernels can be expressed as minimization
over “outlier process” variables [e.g. Geman &
Reynolds ‘92, Black & Rangarajan ‘95]

𝜙 𝑥,𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2

𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤

Data residual for 𝑖th data point: 𝑓𝑖 𝒂 = 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

“Lifted” robust kernel: 𝜙 𝑥,𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2

Gives kernel: 𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤

And original nasty problem: min
𝒂

σ𝑖𝜓 𝑓𝑖(𝒂)

Becomes: min
𝒂

σ𝑖min𝑤
𝑤2𝑓𝑖

2 𝒂 + 1 − 𝑤2 2

min
𝒂

σ𝑖min𝑤𝑖

𝑤𝑖
2𝑓𝑖

2 𝒂 + 1 − 𝑤𝑖
2 2

min
𝒂

min
𝑤𝑖

σ𝑖𝑤𝑖
2𝑓𝑖

2 𝒂 + 1 − 𝑤𝑖
2 2

Which is in the Gauss-Newton form…

186

𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤 [Zöllhofer et al ’14]

𝜙 𝑥, 𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2 [Li, Sumner, Pauly ’08]

Red: Tukey’s biweight
Blue: “Lifted” kernel 𝝍

𝜓 𝑥 = min
𝑤

𝑤2𝑥2 + 1 − 𝑤2 2 = 𝑓 𝑥 = ൞

𝑟2

2
2 −

𝑟2

2
, 𝑥 < 0

1, 𝑥 ≥ 0

𝜓 𝑥

𝑥 𝑥

𝑤

Where lifting really helps

Before [Zach ’14], no-one used the Gauss-Newton structure, so never beat IRLS (iterated
reweighted least squares), with its ICP-like convergence.

3D reconstruction datasets: up to 106 parameters, 106 measurements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SOFTWARE

AUTODIFF

A Benchmark of Selected Algorithmic Differentiation Tools on AD 2016
Some Problems in Machine Learning and Computer Vision
Filip Srajer, Zuzana Kukelova, Andrew Fitzgibbon

AUTODIFF

SUBDIV PECULIARITIES 1: PIECEWISE DOMAIN

199

PIECEWISE DOMAIN 200

 Parameter
domain Ω is in
pieces

 Typically not
unwrappable to a
plane

A

A

B

B

 Parameter domain Ω: pieces with connectivity graph

PIECEWISE DOMAIN

PIECEWISE DOMAIN 202

 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Easy to get direction 𝜹
from 𝑀𝒖 etc.

 But need 𝒖 + 𝜆𝜹
 Override ceres::Evaluator::Plus

 Easy inside patch

 Need outside too

𝒖
𝜹

𝒖

𝜹

 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Need 𝒖 + 𝜆𝜹

 Outside patch:
 Move distance 𝜏 to edge

 Change direction

 Move 𝛿 − 𝜏

 Repeat in next patch

PIECEWISE DOMAIN 203

𝒖
𝜹

𝒖

𝜹

 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Need 𝒖 + 𝜆𝜹

 Outside patch:
 Move distance 𝜏 to edge

 Change direction

 Move 𝛿 − 𝜏

 Repeat in next patch

PIECEWISE DOMAIN 204

𝒖

𝒖 + 𝜹

𝝉

𝝉′

𝒖 + 𝜹

𝒖

𝐸 𝒖 = 𝒔 −𝑀 𝒖, 𝑋 2

EXAMPLE: SINGLE CLOSEST POINT PROBLEM

𝒔

EXAMPLE: SINGLE CLOSEST POINT PROBLEM

𝒔𝐸 𝒖 = 𝒔 −𝑀 𝒖, 𝑋 2

SUBDIV PECULIARITIES 2: EXTRAORDINARY VERTICES

207

 Any vertex of valency ≠ 6 is an “extraordinary vertex”
 Call a triangle with an EV an “irregular triangle”

 Normals and surface at EVs well defined and well
behaved
 But spline evaluation rule is not…

 Solution: virtually subdivide irregular triangles
 Each green element is still linear in 𝑋, quartic in 𝑢, 𝑣

 Need to generate different 𝐴𝑖𝑗𝑘 for σ𝐴𝑖𝑗𝑘𝑢
𝑖𝑣𝑗𝑿𝑘

 All autogenerated C code using Sympy
 Go to depth 5, and then handle “vestigial patch”

 Initially just use spline coeffs from neighbour

EXTRAORDINARY VERTICES 208

𝐸𝑉

SUBDIV PECULIARITIES 2: VANISHING DERIVATIVES

210

“Neighbour extrapolation” for vestigial patch looks OK visually,
but EVs have other issues:

 Vanishing first derivatives: lim
𝒖→𝐸𝑉

𝑀𝒖 𝒖,𝑋 = 𝟎

 Saddle point for gradient-based optimization.

 Unbounded second derivatives

 Infinite thin-plate energy (inconvenience).

 Derivatives with respect to normal, although well defined, are
unstable using chain-rule (inconvenience).

 Solutions

 Reparameterise the function near the extraordinary vertex.

 Replace the function near the extraordinary vertex.

THE VESTIGIAL PATCH

𝐸𝑉

REPARAMETERISING TO FIX DERIVATIVES

Example bad parameterization:

𝒎 𝑠 = 𝑥, 𝑦 = 𝑠, sin 𝑠 𝑠 ∈ ℝ+

𝐦′ s =
d𝒎

d𝑠
𝑠 =

1

2 𝑠
,
cos 𝑠

2 𝑠

⇒ lim
𝑠→0

𝒎′(𝑠) → (∞,∞)

Reparameterise 𝑠 = 𝑡2

𝒎 𝑡 = 𝑥, 𝑦 = 𝑡, sin 𝑡

𝒎′ 𝑡 =
d𝒎

d𝑡
𝑡 = 1, cos 𝑡

⇒ lim
𝑡→0

𝒎𝑡(𝑡) → (1,1)

WHERE LIFTING REALLY HURTS …

WHERE LIFTING REALLY HURTS

 Bundle adjustment

min
𝑈1..𝑁

min
𝑉1..𝑀

𝑖,𝑗∈𝑆

𝜓 𝒎𝑖𝑗 − 𝜋 𝑈𝑖
⊤𝑉𝑗

 Sum over set of camera-point
observations 𝑆

 Robust kernel 𝜓

 Nonlinear projection 𝜋:ℝ3 ↦ ℝ

WHERE LIFTING REALLY HURTS

 Bundle adjustment

min
𝑈1..𝑁

min
𝑉1..𝑀

𝑖,𝑗∈𝑆

𝜓 𝒎𝑖𝑗 − 𝜋 𝑈𝑖
⊤𝑉𝑗

 Sum over set of camera-point
observations 𝑆

 Robust kernel 𝜓

 Nonlinear projection 𝜋:ℝ3 ↦ ℝ

Success rate: 0.1%

WHERE LIFTING REALLY HURTS

 Bundle adjustment

min
𝑈1..𝑁

min
𝑉1..𝑀

𝑖,𝑗∈𝑆

𝒎𝑖𝑗 − 𝜋 𝑈𝑖
⊤𝑉𝑗

2

 Sum over set of camera-point
observations 𝑆

 Robust kernel 𝜓

 Nonlinear projection 𝜋:ℝ3 ↦ ℝ

Success rate: 1%

WHERE LIFTING REALLY HURTS

 Bundle adjustment

min
𝑈1..𝑁

min
𝑉1..𝑀

𝑖,𝑗∈𝑆

𝒎𝑖𝑗 − 𝑈𝑖
⊤𝑉𝑗

2

 Sum over set of camera-point
observations 𝑆

 Robust kernel 𝜓

 Nonlinear projection 𝜋:ℝ3 ↦ ℝ

Success rate: 10%

[0-30% depending on
some stuff]

WHERE LIFTING REALLY HURTS

 Which is just matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

Success rate: ?%

1. Unified derivation of methods

A
L

S

V
H

_
P

F
 [

8
]

T
W

_
W

B
 [

1
1

]

T
O

_
D

W
 [

9
]

D
R

W
1

D
R

W
1

P

D
R

W
2

D
R

W
2

P

P
G

_
C

S
F

 [
7

]

C
H

_
L

M
_

S
 [

5
]

C
H

_
L

M
_

S
_

G
N

 [
5

]

C
H

_
L

M
_

S
_

R
W

2

C
H

_
L

M
_

M
 [

5
]

C
H

_
L

M
_

M
_

G
N

 [
5

]

C
H

_
L

M
_

M
_

R
W

2

N
B

_
R

T
R

M
C

 [
2

]

inputs: M, W, r, U, 𝜆0
𝜆 ← 𝜆0
෩W ← diag vec W with zero-rows removed.

𝐦 ← ෩W vec M
repeat

𝐠 ← V∗ U ⊤vec UV∗ U ⊤ −M // for all algorithms listed here.

• • • • • • • • • • • • • • • • 1: H ← V∗⊤V∗

• • • • • • • • • • • • • • 2: H ← H − ෩V∗
⊤෩U෩U†෩V∗

• • • • 3: H ← H + K𝑚𝑟
⊤ Z∗ ෩U⊤෩U

−1
Z∗⊤K𝑚𝑟

• • • 4: H ← H − K𝑚𝑟
⊤ Z∗ ෩U⊤෩U

−1
Z∗⊤K𝑚𝑟 + K𝑚𝑟

⊤ Z∗෩U†෩V∗ + ෩V∗
⊤෩U†

⊤
Z∗⊤K𝑚𝑟

5: P ← I⊗ I − UU⊤ ∈ ℝ𝑚𝑟×𝑚𝑟 // (5) is also a no-operation if 7 and 8 are.

• • • 6: P ← I⊗ U⊥
⊤ ∈ ℝ 𝑚−𝑟 𝑟×𝑚𝑟

• • • 7: 𝐠 ← P𝐠 // (7) is a no-operation since 𝐠 = P𝐠.

• • • 8: H ← PHP⊤ // (8) is a no-operation since H = PH.

• • • 9: H ← H + I⊗ UU⊤ // relaxed constraint to promote U⊤ΔU = 0.

• • • • • • • • • • • • • • 10: repeat

• • • 11: ΔU ← unvec H−1𝐠
• • • • • • • • • • • • • 12: ΔU ← unvec H + 𝜆I −1𝐠
• • • • • • • • • • • • • 13: 𝜆 ← 𝜆 ∗ 10

• • • • • • • • • • • • • • 14: until 𝑓 U + ΔU, V∗ U + ΔU < 𝑓 U, V∗(U)
• • • • • • • • • • • • • • • • 15: U ← U+ ΔU

• • 16: U ← 𝑞𝑓 U // [U,~]=qr(U,0) in MATLAB.

• • • • • • • • • • • • • • • • 17: V ← unvec ෩U† 𝐦
• • • • • • • • • • • • • 18: 𝜆 ← 𝜆/100

until convergence

outputs: U, V

WHERE LIFTING REALLY HURTS

 Which is just matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

 We all know that given 𝑈,

𝑉∗ 𝑈 = 𝑈†𝑀
⊤

this is how you get alternation/ICP:
1. 𝑈 = 𝑈∗ 𝑉 ;

2. 𝑉 = 𝑉∗ 𝑈 ;

Success rate: 0%

WHERE LIFTING REALLY HURTS

 Matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

𝑉∗ 𝑈 = 𝑈†𝑀
⊤

 … so “unlift”:

min
𝑈∈ℝ𝑀×𝐾

𝑀 −𝑈𝑈†𝑀
2

Success rate: ?%

WHERE LIFTING REALLY HURTS

 Matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

𝑉∗ 𝑈 = 𝑈†𝑀
⊤

 … so “unlift”:

min
𝑈∈ℝ𝑀×𝐾

𝑀 −𝑈𝑈†𝑀
2

 Compute gradient:
𝜕𝐴†

𝜕𝑥
= −𝐴†

𝜕𝐴

𝜕𝑥
𝐴† +⋯ (see supmat)

Success rate: 50%

This is [Wiberg ’73]
or “VarProGN” [Ruhe
& Wedin ’84]

WHERE LIFTING REALLY HURTS

 Matrix completion:
min

𝑈∈ℝ𝑀×𝐾
min

𝑉∈ℝ𝑁×𝐾
𝑀 −𝑈𝑉⊤ 2

𝑉∗ 𝑈 = 𝑈†𝑀
⊤

 … so “unlift”:

min
𝑈∈ℝ𝑀×𝐾

𝑀 −𝑈𝑈†𝑀
2

 And move to Levenberg-Marquardt
instead of GN, and fix some other stuff

Success rate: 97%

[Okatani ’11, Hong &
Fitzgibbon ‘15]

225

13 standard datasets
24 algorithms

From how many of 100 random
starting points does algorithm 𝑋
reach the best known optimum?

Green=100
Blue =0
Grey=timeout

226

A “new” algorithm: RUSSO-𝑋

Run algorithm 𝑋 from random
starting points until you see the
same optimum twice.

while true
fmin := X(M, rand(…))
if fmin < best_so_far

best_so_far :=
fmin

else if fmin =
best_so_far

success!
end

227

228

229

So speed is all that matters. How can we measure it fairly?
Re-implement everything, faster and more accurate than original authors.

Lifting and VarPro are almost exact opposites

 In much of my previous work, lifting helped

 In [Zach, ECCV ’14], VarPro was drastically worse

 In [Okatani ’11] VarPro is dramatically better

Everything else is detail: numerics, manifold projection,
Hessian approximations, …

CONCLUSION 230

 Using subdivs is easy
 The messy stuff is encapsulated in Eval_M*(), and Plus()

 Google’s “Ceres” solver does all the Levenberg-Marquardt

 Continuous optimization often doesn’t need a very good
initial estimate

 Using subdivs allows correspondences 𝒖𝑖 to update during
the optimization
 If ICP takes a long time, this may not…

 But you must exploit sparsity

 Future work:
 Dogs, hinted ARAP, skeleton, even more speed, …

CONCLUSIONS ETC 231

 Seen a few students nastily bitten by collapsing meshes

 So what’s changed? How do I get bitten by the bug, not the hornet?
1. Sum over data, not model

2. Use modern (2006) regularizers

3. Vary everything

4. Define clean interpolants

FITTING MESHES 232

CONCLUSIONS 233

• Finite diffs fine, just expensive
• Myths: you don't need to find the optimum
• Parameter tuning
• Constrained optimization

