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Goal

LEARN HOWTO SOLVE HARD VISION PROBLEMS,
USING TOOLS THAT MAY APPEAR INELEGANT,
BUT ARE MUCH SMARTER THAN THEY LOOK.
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Curve/surface fitting Parameter estimation "Bundle adjustment”
(Video from our friends at Google)

APPLICATIONS § Microsof



Blanz & Vetter
Siggraph 1999

FITTING 3D SHAPE BASES [l



Anguelov et al.
Siggraph 2005

FITTING 3D SHAPE BASES m Microsoft



M(P(6;X(8,V),L(B,L)))

Shape Space

Select shap

Learning an Efficient Model of Hand Shape Variation from Depth Images
Khamis et al, CVPR1sg

WHAT DO | MEAN BY SHAPE? & Microsoft



FITTING HANDSTO 3D DATA s Microsoft






IMAGE DENOISING  [STRANDMARK & AGARWAL, 2014, arXiv:1403.5590] m Microsoft 10



FITTING SUBDIVISION SURFACESTO 2D DATA m Microsoft



FITTING SUBDIVISIONSURFACESTO 2D DATA m Microsoft



FITTING POLYGON MESHESTOVIDEO s Microsoft



Input Kinect Stream KinectFusion Deformable Fusion

[3D Scanning Deformable Objects with a Single RGBD Sensor, Dou et al, CVPR15]

s Microsoft 14




"KinEtre: Animating the World with the Human Body
Chen et al. UIST 2012 —




“KinEtre: Animating the World with the Human Body *
Chen et al. UIST 2012




“KinEtre: Animating the World with the Human Body *
Chen et al. UIST 2012
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NONRIGID STRUCTURE FROM MOTION Bl Miosoft



- .. = Affinerigid: linear
Wi1 Wiz Win embedding into R3, solved with
Wy1 Wy o Woy Wiberg / bundle adjustment
. . . . = Perspective rigid: (slightly)
nonlinear embeddinginto R3
solved with bundle adjustment

" Nonrigid: linear embedding
into R>X, [with nonlinear constraints]

= Kernel nonrigid/Trajectory bases:
nonlinear/basis function
embedding into R¥

= Unwrap mosaic: nonlinear
embedding into R?

NONRIGID STRUCTURE FROM MOTION il Microsoft









2D slice through log e( A, B) where

L

. A L ¢«A,B):= |Wo (M- AB")|
240 x 167 20 x 2944 72 x 319
30% missing

72% missing

Task: Given noisy observation M, and weight
matrix W, compute

argmin || Wao (M- ABT) Hi‘
A.B

where R =P © Q & i = pijgi;-

MATRIX FACTORIZATION [HONG & F., ICCV 15] & Microsoft



Algorithm Framework Manifold retraction

ALS [7] RW3 (ALS) None
PowerFactorization [5, 77] RW3 (ALS) g-factor
LM-S [¥] Newton + (Damping) orth (replaced by g-factor )
LM-Scw [, 13] RWI1 (GN) + (Damping) (DRWI equiv.) orth (replaced by g-factor )
LM-M [¥] Reduced, Newton + (Damping) orth (replaced by g-factor )
LM-Mgn [¥] Reduced, RW1 (GN) + (Damping) orth (replaced by g-factor )
Wiberg [ 5] RW2 (Approx. GN) None
Damped Wiberg [ ! V] RW2 (Approx. GN) + (Projection const.) » + (Damping) None
CSF [13] RW2 (Approx. GN) + (Damping) (DRW?2 equiv.) q-factor
RTRMC [ ] Projected,, Newton + {Regularization } + (Trust Region)  g-factor
LM-Spw2 RW2 (Approx. GN) + (Damping) (DRW2 equiv.) g-factor
LM-M gw 2 Reduced,, RW2 (Approx. GN) + (Damping) g-factor
DRWI RW1 (GN) + (Damping) g-factor
DRWI1P RW1 (GN) + (Projection const.) p + (Damping) g-factor
DRW2 RW2 (Approx. GN) + (Damping) g-factor
DRW?2P RW2 (Approx. GN) + (Projection const.) p + (Damping) g-factor
sH* =P, T (VT (I, — [00"] pw2)V* + [K 2 (UTU) 1 Z* TKoms | R2 % [ 1]
+[K, ZUVP, + P,V U 2K, ey + (@I, @UUT) p + (ALur)) P,

MATRIX FACTORIZATION [HONG & F., ICCV 15] & Microsoft



(a) Best known minimum (0.3228) (b) Second best solution (0.3230) (¢) Second best, zoomed to image

Figure I: Illustration that a solution with function value just .06% above the optimum can have significantly worse extrap-
olation properties. This is a reconstruction of point trajectories in the standard “Giraffe” sequence. Even when zooming
in to eliminate gross outliers (not possible for many reconstruction problems), it is clear that numerous tracks have been
incorrectly reconstructed.

MYTH:YOU DON'T NEEDTO OPTIMIZE FAR e



BUT POINTS ARETOO EASY...

» Microsoft
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OBJECT CATEGORY MODELS



SHAPE FROM CURVES



NRSfM Our method



Our method
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Low-texture scene: Input ima



Towards Pointless Structure from Motion: 3D reconstruction from 3D curves
Irina Nurutdinova, Andrew Fitzgibbon, ICCV "15

[Zoom] [Zoom]

Dense reconstruction (PMVS) using Dense reconstruction (PMVS) using
cameras estimated from points only cameras estimated from points and curves




= The shape from silhouette problem, even for multiple
images of the same structure, was not adequately solved
before

= Why?

The discovery of the fundamental matrix and closed form

solutions to various geometry problems revolutionized computer
vision...

...and distracted us from easy problems like this one.

= Behind every “closed form” solution (ellipse fitting,

F+radial), there’s a perfectly good nonlinear minimization
solution you could have used instead

unless you are in the extreme speed domain [see Kukelova et al]

a Microsoft 36



Write energy describing the image collection
F

Edata (If: Bf) + Ereg(gf: ecore)
f=1
Where:

0 are (unknown) parameters of surface model in frame f

0 ore are (unknown) parameters of some shape model (e.q. linear
combination) and E ¢z measures distance, e.g. ARAP

And optimize it using Levenberg-Marquardt

= (i.e. any Newton-like algorithm, making maximum use of problem
structure)

FOR EACHTASK, THE METHOD IS THE SAME MNEECT



= So, you can do lots of things by “fitting models to
data”.

= How do you do it right?

= Let's look at some examples.

a Microsoft 38



EXAMPLE: SHAPE FITTING




t=o0:.01:2;

plot(cos(t)*2, sin(t));

SHAPE QUIZ m Microsoft 40



I

t=o0:.01:2;

o

plot(cos(t)*2, sin(t)); ! a8

o

0

o

SHAPE QUIZ m Microsoft



>> U = 0:.1:2%pi; V= 0:.1:2%pj;
>> | = ones(size(v));

>> Uy =U'*

>>v = |"*y;

>> plot3(cos(u), sin(u), v, 'k.")

SHAPE QUIZ m Microsoft
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>> | = ones(size(v))
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>> v =|"*v
>> plot3(cos(u), s
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What is a shape?

* Functions
e (urves
 Surfaces

a Microsoft Lt



function y(x::Real)::Real = .3*x + 2

NN
Kg

0 02 04 06 08 1

function C(t::Real) ::Point2D = 03
Point2D(t*2 + 2, t*2 - t + 1) 08

07% 22 24 26 28 3

function S(u::Real, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

ASHAPE IS AFUNCTION & Microsoft



function y(x::Real)::Real = .3*x + 2

NN
Kp

0 02 04 06 08 1

ASHAPE IS AFUNCTION & Microsoft



SHAPES DESCRIBE DATA & Microsoft



y=ax+b y=ax*+bx+c y=ax3+ bx*+cx+d

SHAFES DESCRIBE DATA & Microsoft



y=ax+b y=ax?+bx+c y =sin(x) +ax + b

SHAPFES DESCRIBE DATA & Microsoft
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- s
y=ax+b y=ax?+bx+c y=ifx <a
(x—b)’+c
else
—(x—d)?* +e

SHAPES DESCRIBE DATA & Microsoft



function y(x::Real)::Real = .3*x + 2

NN
‘i;g

0 02 04 06 08 1

function C(t::Real) ::Point2D = 08

Point2D(t*2 + 2, t%2 - t + 1) 08

0.

07% 22 24 26 28 3

function S(u::Real, v::Real)::Point3D =

Point3D (cos(u), sin(u), v)

ASHAPE IS AFUNCTION 8 Microsoft



function y(x::Interval)::Real = .3*x + 2

NN
‘i;p

0 02 04 06 08 1

function C(t::Interval) : :Point2D = 03

0.

Point2D(t*2 + 2, &2 - t + 1) 08

0.

07% 22 24 26 28 3

function S(u::Interval, v::Real)::Point3D =

Point3D (cos(u), sin(u), v)

FUNZTIONS OVER DOMAINS () & Microsoft



v Uz U4 UO UD 1

function C(t::Interval) : :Point2D = 03

Point2D(t*2 + 2, &2 - t + 1) 08

07% 22 24 26 28 3

C U L /I E S a Microsoft



abstract Curve {
method eval (t::Interval) : :Point2D

};

PARAMETERIZED SHAPES & Microsoft



abstract Curve {
method eval(t::Interval) : :Point2D

};

type Conic < Curve ({
eval (t) = ‘
POintZD (t"2 + 2 , t'\2 -— t <+ 1) 08

}; 07592 24 26 28 3

PARAMETERIZED SHAPES & Microsoft



abstract Curve {
method eval (t::Interwval) : :Point2D
};
type Conic < Curve {
©::Real[]; // Shape parameters
eval (t) =

Point2D( ©[0]*t*2 + ©[1]*t + ©[2],
e[3]*t*2 + ©[4]*t + ©[5] )

0.

};
Conic([1,0,2,1,-1,1])

0.
075 22 24 26 28 3

PARAMETERIZED SHAPES & Microsoft




abstract Curve {
method eval (t::Interval) ::Point2D

method distance (x: :Point2D) : :Real
method closest point(x::Point2D) ::Point2D

closest point

OTH ER “M ETHODS" a Microsoft



abstract Curve {
method eval (t::Interval) ::Point2D

x @Tisty,
¥ closest
method distance (x::Point2D): :Re

method closest point(x::Point2D) ::Point2D
};

distance(x) = norm(x - this.closest point(x))

OTH ER “M ETHODS" a Microsoft



abstract Curve {
method eval (t::Interval) ::Point2D

x @Tisty,
¥ closest
method distance (x::Point2D): :Re

method closest point(x::Point2D) ::Point2D
};

distance (x) =

minimize (A(t) norm(this.eval(t) - x), 0.0)

OTH ER “M ETHODS" a Microsoft



abstract Curve {

method eval (t::Interval) ::Point2D

¥ closest

method distance (x::Point2D) ::Real point

function £(t) = norm(this.eval(t) - x)*2

distance(x) = minimize(f, Interval: :Min)

function minimize (£, t)
while not converged

t -=a * £/ (t) // Compute derivative

OTHER “"METHODS" § Micosof



abstract Curve { ,
method eval(t::Interval) : :Point2D
method eval’ (t::Interval) ::Point2D
method distance (x::Point2D) ::Real

¥ closest
point

method closest point(x::Point2D) ::Point2D

y=ift<a y =ift<a
(t—b)* +c 2(t — b)
else else
ft—d)* +e 2f(t — d)

OTHER “"METHODS" § Micosof



Shape, meet thy data




Sum-of-min problems

N
mein Z C(0).closest_point(s,,)

n=1

A MORE GENERAL PROBLEM CLASS & Microsoft



AN EXEMPLARY PROBLEM

"Based on a true story”, not necessarily historically accurate

Note well: this problem is a good proxy for much more realistic problems:
Stereo camera calibration
Multiple-camera bundle adjustment
Surface fitting, e.g. subdivision surfaces to range data, realtime hand tracking
Matrix completion
Image denoising.

[Inspired by Neil Lawrence’s professorial inaugural] 2 Microsoft 64



/
The yeary1801
The hot topic: A “guest planet”, named Ceres
The big question: Where will it reappear?

AN EXEMPLARY PROBLEM & Microsoft
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AN EXEMPLARY PROBLEM & Microsoft



Sample s,

Measurements or “samples”:

. xn
* 2D points s, = (y )forn =1..N
n

* Captured at essentially unknown times t,,

AN EXEMPLARY PROBLEM & Microsoft



Measurements or “samples”:

= ()’n) forn=1..N

entially unknown times t,,

* 2D points

* Capturedate

Known model: Points lie G

Clear(ish) objective:
Estimate the ellipse parameters, intersect with circle of sun, achieve fame

WE KNOWTHE EXACT FORM OF THE MODEL & Microsoft



AND ESTIMATING ITWELLGETS US CLOSE... leeEE G



"Direct least squares fitting of ellipses”
[Fitzgibbon et al, 1999]

Does not minimize “sum of distances”
objective, but a "nearby” convex objective

RUNNINGAN OFF-THE-SHELF FITTER DOES NOT.



Measurements or "samples”:

)forn=1..N
Vi, orn = 1..

* Captured at unknown times t,,

* 2D points s,, = (

Known model: Points lie on an ellipse
s, = c(t,; 0) + Noise

. (B1cost+0,sint + 03
c(£;8) = (94 cost + O sint + 06)

WE KNOWTHE EXACT FORM OF THE MODEL u Microsoft 72



‘_I\}\ A parametric description
Sample s,, 6, cost+ 0,sint + 65

c(£;8) = (94 cost + Ossint + 96)

6, cost + 0, sint+93)
6, cost + Ossint + 04

c(t; 0) = ( Defines a curve (a set of points in R?)

s, = c(t,; 0) + Noise

C) ={c(t:0)| 0 <t < 2m}

Potential confusion: curve parameter t and
shape parameter vector 8. This should be ok for
this talk.

A PARAMETRIC FUNCTION AND ACURVE & Microsoft 72



All our algorithms will start with a guess of @ and
/2 refine it.
Sample s,

We will often want to think about the distance of
a sample s from the curve C(0).

6, cost + 6,sint + 05
c(t;B)z(H cost+ 6 sint+9) _ :
4 > 67 | Often, closest point is appropriate.
S, = C(tn; 9) + Noise [Others easily handled too.]
C(0) ={c(t;0)] 0<t<2m) D(s,0) := min ||s — x||?
xX€EC(0)

D(s,0) = min|ls — c(t; O)]|°

DISTANCES AND CLOSEST POINTS & Microsoft



Sample snf

6, cost + 6,sint + 05

c(t;0) = (94 cost + Ossint + O

s, = c(t,; 0) + Noise
C(O) ={c(t;0)| 0<t<2m}

D(s, 6) = minl|s — c(; 8)||”

)

Minimize over all ellipses 0
@ := argmin z D(s,, 0)
]
n

Just using an off-the-shelf optimizer.

h

¢

m
=1

w |

=TTy

w M

{ data

1
]
0 ™

N o W
0 ]
}

-

ion err = objective (theta, S)

Hh
[+
e}
N T

m

I
O

N

l:s8ize(S5,2)
err + D(S(:,n), theta):;

4

H
H
]

h

- 0

2 M K K ¢ ¥ W w
I

m
o

theta star = fminunc (@ (theta) objective (theta, 35), theta 0):

ABETTER ESTIMATE

» Microsoft




%+ Sample from curve 'theta' at 't’
function out = c(t, theta) f
out = [ Sample s,
theta(l) *cos(t) + theta(2)*sin(t) + theta(3) \ 0. si 0
_ t,cost+ 0,sInt +
theta(4) *cos(t) + theta(5)*sin(t) + theta(6) c(t;0)=< 1 IS 3)
] 0,cosc - A-sint + O-
end
]
¥ Closest point to 's' on curve 'theta’ £ Objective function for fminunc
* Algocritiam O1SCreétvizZé T ana searcn % Distance ,:f N data 3311_.;;%3 ,S, -
function d min = D(s, theta) ~Snisiitiaddll -
d min = Inf; ) ) ) _
x - function err = objective(theta, S)
for t test = 0:0.01:2*pi
, rr = 0;
d = norm(c(t_test, theta) - s); '
d min = min(d, d min); for n=l1:size(S,2)
end err = err + D(S(:,n), theta):;
end
$ initial estimate 'theta !
= fminunc(@(theta) objective (theta, 5), theta 0):




AND ESTIMATING ITWELLGETS US CLOSE... JFeEiE g



= We have an accurate solution

Certainly better than the “closed form” algorithm, which minimized a “nearby” convex
objective.

= All we need to worry about now is speed...
If you take 3 weeks to make a prediction, someone else will get the fame.
Speed is everything. If speed didnt matter, you would just use random search.

= Strategies to speed it up
Attack the inner loop

Remove discrete minimizationin D (s, 0)
Analyse the problem again
Understand our tools: ‘fminunc’, or whatever we're using
Compute analytic derivatives

SOAREWE DONEYET? & Microsoft



A slow method A fast method, slowed down 10x

SPEED RESULTS: SNEAK PREVIEW & Microsoft



SPEEDUP 1: ATTACK THE INNER
LOOP

a Microsoft 79



function out = c(t, theta)
out = [

theta(l) *cos(t) + theta(2)*sin(t)

+

theta(3)
theta(4) *cos(t) + theta(5)*sin(t) + theta(6)

en
3 Fe Y - — -— - - -— — ! ! - IS YTy f - - e -
— ~F-%-- ™ B = " b F—Y ~ =
= o e Ml Asd W - - -~ - &4 - e VIS - - b CA
- - = . . -
3 Pol sorithm: NS v EateT e - = v T el
= A W o Rl e - S AST AT T - - - .4 - A A e

ction d min = D(s, theta)
n = Inf;
st = 0:0.01:2*pi
= norm(c(t_test, theta) - s);
min = min(d, d min):;

end
theta star = fminunc (@ (theta) objective (theta, S), theta 0);

SPEEDUP 1: ATTACKTHE INNER LOOP

a Microsoft



function out = c(t, theta)
out = [ S
theta(l) *cos(t) + theta(2)*sin(t) + theta(3)
theta(4) *cos(t) + theta(5)*sin(t) + theta(é6)
1
end

6,cost+ 0,sint + 6
! 2 3) Define E(t) = ||s — c(t; 0)]|?

c(t;0) = (94 cost + Ossint + O

- . . dE
T e Set— =0
Algorithm: discretize t and search. dt
function d min = D(s, theta)
d_mln = Inf;
e o % el S Yields 4™ order polynomial, extract 4 roots.

d min = min(d, d_min);
end

end Much cheaper than previous

D(s,0) = mgn”s — c(t: 0)]2 implementation.

SPEEDUP 1: ATTACKTHE INNER LOOP il Microsoft



SPEEDUP 2: ANALYSE THE
PROBLEM



6, cost + 6,sint + 05

c(t;0) = (94 cost + Ossint + O

s, = c(t,; 0) + Noise
C(O) ={c(t;0)| 0<t<2m}

D(s, 6) = minl|s — c(; 8)||”

0" := argmin Z D(s,, 0)
0
n

)

Minimize over all ellipses 0
D D(s,8) = ) minlls, = c(t; )1
n n

Notice c(t; ) is linearin 0, so function is

= > minlls, — A8
- n

And we can solve in closed form:
e forT ={t,}}_, given@. Cost N RootOfs.

 and @ givenT. Cost one linear solve.

So alternate—"ICP”, “EM”, "Block Coordinate
Descent”

LOOKATTHE PROBLEM AGAIN & Microsoft

83



bad decision..



ICP, a bad 1°t-order method A second order method, slowed down 10x

CONVERGENCE RATES & Microsoft



10t |
1o “Previous iteration” convergence test
0T f(x*) = f(x*1) < 7 will stop here. |
(@]
ULJ N
1077 “Half the time ago” convergence test "
f(x*) = f(x*/?) < 7 will stop here.
10_1'47 ° * . ° _
L ! ! Loy ! ! [ R | ! ! L | ! ! L
10" 10° 10' 10° 10°
Time (sec)

CONVERGENCE CURVES & Microsoft



101
102"

S

i ‘
103" |
10'1'4 L ° ° ° ° |

Lol | | R | | Lo | | Lo | | L1
10™ 10° 10" 10° 10°

Time (sec)

AH, BUT WHAT ABOUTTEST ERROR? il Microsoft



N
6 = argmin z min f,, (u, 9)
[ u
n=1




N
6 = argmin z min f,, (u, 9)
[ u
n=1

= argmin E min f;, (u,,, 6)
0 Un
n




N
0 = argmin z mtin fn(u,0)
0 n=1
= argmin z min f,, (u,, 6)

= argmln mln z fn(u,, 0)

[Recall that: mxin f(x) + myin giy) = rgcllyn f)+ 9]



Uui.N

N
6 = argmin z min f;, (u, 6) 0 = argmm mlnz fn(un, 6)
[} u
n=1

= Nasty objective = Simple objective (no *min”)

= M parameters = M + N parameters

= Cost periteration O(N) = Cost periteration O(NM")
Slow Fast

(in actual real-world wall clock time, even for very large N)



ICP, a bad 1°t-order method A second order method, slowed down 10x

CONVERGENCE RATES & Microsoft



SPEEDUP 3: UNDERSTAND OUR
TOOLS

a Microsoft 93



$2 initial estimate 'theta

theta star = fminunc (@ (theta) objective (theta, S), theta 0):

Matlab’s fminunc is one of many nonlinear optimizers.
Takes function f(x): R? = R, initial estimate x,,

General “trust-region” class of strategies repeats:

«  Compute update 6, to current guess x,
Using function, derivatives, “trust region radius”, herbs, spices, ...

 If update produces lower f value
“accept”: update x;,1 = x) + Oy

Else
“reject”: fiddle with “trust region radius”

a Microsoft




ASIDE...

CONTINUOUS
OPTIMIZATION

Andrew Fitzgibbon

Microsoft Research Cambridge



Given function
f(x):R% > R,
Devise strategies for finding x which minimizes f

Gradient descent++: Stochastic, Block, Minibatch
Coordinate descent++: Block

Newton++: Gauss, Quasi, Damped, Levenberg Marquardt, dogleg, Trust
region, Doublestep LM, [L-]BFGS, Nonlin CG

* Not covered
Proximal methods: Nesterov, ADMM...

GOAL a Microsoft



Given function
f(x):RY > R
Devise strategies for finding x which minimizes f

VIVAVAVAYS

quadratic convex quasiconvex multi- noisy horrible
extremum

CLASSES OF FUNCTIONS & Microsoft



Given function

f(x):RY > R
Devise strategies for finding x which minimizes f
Wiy
quadratic convex quasiconvex multi- noisy horrible
extremum

CLASSES OF FUNCTIONS & Microsoft



guasiconvex

/MX
Nd ratic

_

a Microsoft



guasiconvex

/MX
Nd ratic

_

Easy Hard

a Microsoft 100



= Fast minimization depends on derivatives

DERIVATIVES § Microsoft 202



EXAMPLE



>> print -dmeta

EXAM P L E a Microsoft



>> print —dpdf % then go to pdf and paste
OR
>> set(findobj(z, 'type’, 'line"), 'linesmoothing

' 'on') % then screengrab

EXAM P L E a Microsoft



N~

th
v

(') =
T LI

2

e TN

>> set(gcf, 'paperUnits’, 'centimeters’, 'paperposition’, [1 1 9 6.6])
>> print —dpdf % then go to pdf and paste

a Microsoft

EXAMPLE



SWITCHTO MATLAB...

» Microsoft




Gom = 191

Error = 0.0%

(R

Easy

0 0.2 0.4 0.6 0.8 1

Count = 20(
Error = 0.0

6

(R

04 06 0.8 ]
Hard

ALTERNATION & Microsoft



= Alternation is slow

because valleys may not
be axis aligned

= Sotry gradient descent?

25 0 5 10 15

GRADIENT DESCENT & Microsoft



= Alternation is slow

because valleys may not
be axis aligned

= Sotry gradient descent?

%50 5 10 15
Steepest descent (xzg = [0, 14])

GRADIENT DESCENT & Microsoft



= Alternation is slow
because valleys may not
be axis aligned

= So try gradient descent?

= Note that convergence
broofs are available for
hoth of the above

I\ - - s " Butsowhat?
Steepest descent (zg = [0, 14])

GRADIENT DESCENT & Microsoft




Steepest Descent

Steepest Descent

° | | | N

2.5t 4 \"\
\
2 3
0.8
1 5F ’1‘
\."‘ . b-

1 \\.‘ _ O 0.75} ‘6\}} |

0.5F  \ = \
~ 0.7 -
o 3
-0.5-\ \ — / 0.65 54

_1 \I\' v / \h

-2 -1 0 1 2 -0.95 -0.9 -0.85 -0.8 -0.75

AND ON A HARD PROBLEM

a Microsoft



= (Nonlinear) conjugate
gradients

= Uses 1%t derivatives only

= Avoids “undoing”
previous work

. 4
10 15

USEABETTERALGORITHM & Microsoft




Conjugate Gradient Descent

= (Nonlinear) conjugate
gradients

= Uses 1%t derivatives only

= And avoids “undoing”
previous work

= 101 iterations on
this problem

gradient < 1e-3 after 101 iterations

USEABETTERALGORITHM & Microsoft



BUT WE CAN DO BETTER...

» Microsoft




= Starting with x how can | choose &
so that f(x + &) is better than f(x)?

= S50 compute

j + 6
;g}gglf (x + 6)

= But hang on, that's the same problem we were trying to
solve?

USE SECOND DERIVATIVES... & Microsoft



= Starting with x how can | choose &
so that f(x + &) is better than f(x)?

= S50 compute
m(sin f(x+96)

~ min fx)+8Tg(x) + %6TH(x)5

gx) =Vf(x)
H(x) = VVTf(x)

USE SECOND DERIVATIVES... & Microsoft



= How does it look?

fx)+8Tg(x) +56TH(x)S

g(x) =Vf(x)
H(x) =VV'f(x)

USE SECOND DERIVATIVES...



= Choose 6 sothat f(x + §) is better than f(x)?

= Compute
min f + 6Tg+286TH S

[derive]

USE SECOND DERIVATIVES... & Microsoft



= Choose 6 sothat f(x + §) is better than f(x)?

= Compute
min f + 6Tg+286TH S

6§ =—-H1g

USE SECOND DERIVATIVES... & Microsoft



>> use demos

>>demo_taylor_2d(o, 'newton’, 'rosenbrock’)
>>demo_taylor_2d(o, 'newton’, 'sqrt_rosenbrock’)
>>demo_taylor_2d(z, 'damped newton Is', 'rosenbrock’)

ISTHAT AGOOD IDEA? & Microsoft



= Choose 6 sothat f(x + §) is better than f(x)?
= Updates:

— -1
6Newton = —H g
6GradientDescent — _Ag

USE SECOND DERIVATIVES... & Microsoft



= Updates:

— -1
6Newton = —H g
6GradientDescent — _Ag
= So combine them:

6DampedNewton = —(H + A_lld)_lg
= —-AAH + 1) 1g
= A small =conservative gradient step
= Alarge =Newton step

USE SECOND DERIVATIVES... & Microsoft



A=1073%;1 = 3;

while 1 < 10°
|f, g, H] = error_function(xy) % Perhaps Gauss-Newton for H
6 =—(H+ A\g % Many ways to do this efficiently

Xnew = X + o)
if error_function(x,,.,,) < f:

X = Xnew % Decreased error, accept the new x
A=A/A; 1 =3 % Doing well—decrease A

else
A=A A =34 % Doing badly—increase A quick

UPDATING A & Microsoft



Levenberg-Marquardt
= Just damped Newton with approximate H
= Foraspecial formof f

FO) = ) fix)?

= where f;(x) are
zero-mean
small at the optimum

1°T DERIVATIVES AGAIN & Microsoft



Levenberg Marquardt
= Just damped Newton with approximate H
= Foraspecial formof f

FG) = ) fil)?
7f(x) =

VT f(x) =

BACKTO FIRST DERIVATIVES & Microsoft



Levenberg Marquardt
= Just damped Newton with approximate H
= Foraspecial formof f

FG) = ) fi)?

7FCO = ) 2fGOVfi)

l
Vvt f(x) = 22([}( \7Tfl(x>-|i\7f;;xl|7Tfl(x)
i
BACKTO FIRST DERIVATIVES & Microsoft



= Not 0(n?) if you exploit sparsity of Hessian or
Jacobian

-Vf 1.(35)-
7 f ()

ORDER NCUBED? & Microsoft



N O o(r})- oM

TYPICAL HESSIANSTRUCTURE



107 — I ;
e Al (Closed Form)
m— At (general)
—— |_evenberg Marquardt
= Damped Newton (general)
5 10° | :
Q
@
10"+ -
10° 10° 10° 10°

Function evaluations

CONCLUSION:YMMV 2 Microsoft



i (M- A" )ow

" G=)el

w | — damped Newton |
l400 .-' """ hybl'ld I'!’IethOd for k=1:500
0l —— alternation
| xo = randn(n, 1);
| x* = minimize(f, x,);
Elk] = f(x)
: end
i plot(sort(E));
50O runs

CONCLUSION:YMMV 2 Microsoft



DINOSAU
”Vwm

T T T i T i T T 500 P
4
o) —— damped Newton 1 ..}
£ d
- ]
w S e hybrid method | «! .
[}
" r
0| —— alternation | asof .
L]
300} 1 300 /
]
250 250
200 200
150 150
100} 100 -
ol
ol
Al
oF L
1 1 1 1 1 1 1 L 1 00.519 1 l)c).e17 L L L
101.73 10 74 101.15 101.16 101.77 101.7! 101.79 101.0 101.01 1.0847 1.2 1.3

500 runs HleterrEni 1000 runs

CONCLUSION:YMMV 2 Microsoft



= On many problems, = But just alternation is not

alternation is just fine Unless you're willing to
Indeed always start with a problem-select
couple of alternation steps = Convergence guarantees
= Computing 2"9 derivatives is are fine, but practice is
a pain what matters
But you don’t need to for LM = Inverting the Hessian is
rarely O(n>)

There is no universal optimizer




|fe+ed—fe0
“Ifectea) - Fo0).

= Surprisingly accurate for e.g. u = 107> (in double prec.)

. Vf =

= |ncredibly slow.. Unless (see next slide)
= Useful for checking your analytic derivatives

= |ncredibly slow. Try Powell or Simplex instead.

= Central differences twice as slow, somewhat more accurate

ON FINITE-DIFFERENCE DERIVATIVES & Microsoft



= Normally try e; to e; sequentially

= But if we know the nonzero structure of the Jacobian,
can go rather faster.

GRAPH COLOURING FOR FINITE DIFFS 8 Microsoft 234



= We're minimizing f (x)
= Many algorithms will be happier if entries of x are all
“around 1”.

E.g. don't have angle in degrees and distances in km

= Many algorithms may want f values to be “close to
x or close to zero at the optimum”.

Specifically, think about roundoff in quantities like f(xg4+1) —
f (x) being compared to numbers like 107°

ON SCAL'NG m Microsoft



= What about stochastic gradient descent?
You can do analogous 2" order things.

= What about LBFGS?

| haven’t had much success with it, other folk love it...

= |tried Isgnonlin and it was really slow—why?
Wrong derivatives (e.g. finite-differences)
Didn’t use sparsity correctly
Didn’t set “options.Algorithm” or “options.LargeScale”.

QUESTIONS & Microsoft



= Resources:

1. Matlab fminsearch and fminunc documentation
2. awful.codeplex.com au_optimproblem

3. Tom Minka webpage on matrix derivatives

4. Google “ceres” solver

5. UTorono “Theano” system for Python



= Gotchas with Isgnonlin
opts.LargeScale ="'on';

opts.Jacobian ="'on';
= Need non-rank-def J?

= Need to implement JacobMult?




WHAT IS A SURFACE?




function S(u::Interval, v::Real)::Point3D =

Point3D (cos(u), sin(u), v)

C U R‘VIE S a Microsoft



= Surface: mapping S(u) from R? » R3
E.g. cylinder S(u,v) = (cosu,sinu, v)

*the surface is actually the set {M(u; @)|u € Q}

S U R FAC E a Microsoft 145



= Surface: mapping S(u) from R? » R3

E.g. cylinder S(u,v) = (cosu,sinu, v) >
= Probably not all of R?, but a subset ()
E.g.square Q = [0,2m) X [0, H]

But also any union of patch domains ) = Up 0,

*the surface is actually the set {M(u; @)|u € Q}

S U RFAC E a Microsoft 146



= Surface: mapping S(u) from R? » R3

E.g. cylinder S(u,v) = (cosu,sinu, v) T
= Probably not all of R?, but a subset O

E.g.square Q = [0,2m) X [0, H]

But also any union of patch domains ) = Up 0,

= And we'll look at parameterised surfaces S(u; 0)
E.g. Cylinder S(u,v; R,H) = (Rcosu,Rsinu, Hv)
with Q = [0,27) X [0,1]

E.g. subdivision surface S(u; X)
where ® = X € R3*" is matrix of control vertices

*the surface is actually the set {M(u; @)|u € Q}

a Microsoft 147

SURFACE



TOOL: SUBDIVISION SURFACES

» Microsoft




Control mesh vertices X € R3*™m
Herem = 16

CONTROL MESH a Microsoft 149



Control mesh vertices X € R3*™m
Herem = 16

LIMIT SURFACE a Microsoft 150



SUBDIV RULE: STEP 1. ADD NEWVERTICES ll Microsoft 151



SUBDIV RULE: STEP 2. AVERAGE NEIGHBOURS s Microsoft 152



» Microsoft
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3 SUBDIVISIONS 3 Microsolt



Control mesh vertices V € R3*™
Herem = 16

Blue surfaceis {M(w; V) | u € Q}
Q is the grey surface

LIMIT SURFACE m Microsoft 155



Control mesh vertices V € R3*"
Heren = 16

Blue surfaceis {M(w; V) | u € Q}
Q is the grey surface

CONTROLVERTICES DEFINETHE SHAPE s Microsoft 156



= Mostly, M is quite simple:
M(u; X) = M(t,u,v; X1, ..., X)) = 2 Afjkuivjxk

itj<4
k=1.n
Integer triangle id t
Quarticinu, v
Linearin X
Easy derivatives

= But...

2"d Derivatives unbounded although normals well defined
Piecewise parameter domain

SUBDIVISION SURFACE: PARAMETRIC FORM e g



EXAMPLES



BACKTO DOLPHINS




X; = By + ai1B1 + a;; B,

Linear blend shapes:

XTL — E alk Bk Image i represented by coefficient

vector a; = [a;q, ..., Ajx]
k=0

MODEL REPRESENTATION & Microsoft 160












O u;; Contour generator
preimage in
(unknown)

s;; 2D point

n;; 2D normal o
% c.g. pointin 3D is M(u;j; X;)

m Microsoft 167

DATATERMS



O u;; Contour generator
preimage in
(unknown)

s;; 2D point

n;; 2D normal o
% c.g. pointin 3D is M(u;j; X;)

a Microsoft 168

DATATERMS



Image i

Projection Camera
e.g. Perspective position

Silhouette: \ /
Si

Sij— n(@i,M(uij,Xi))Hz

Normal:

Si
st = 3 '] - oG 10

DATATERMS 2 Microsoft 169



Image i

Linear Blend Shapes (PCA) Model:

X;= ) ayBy
2.
Silhouette:
Si

ESll z

Sij — n 0 M(uu X))H

Normal:

Si
st = 3 '] - oG 10

DATATERMS



Data fidelity
terms

p(I|X;; U)

_,

B =5 L7223 s = (MG | )

7=31
S; 2
1 : (O
B = 2Unoim [ 0 ] — v (R;N(s ZJ'X))
7=1
con 1 1\2
B = Sown ) llew — mi (M (| X2)|°

Smooth Basis

k=1
.mzéfmmm&MQ
Q

M., (4| B |2+ || M, (4| B,,)||? du
(6) (1 Bon) [P+ 1My () By |
Gaussian shape D
WEightS Ereg —= 3 Z a?m D
=3 Xg= E im Bm
Smooth e m=0
x, 2
contour == Z T(d(ij, Ui j41))

171
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Een
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E;’l orm J
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sil L g % : o 2 Z &ak Bﬁ
Ei" =50a Z |8i5 — mi (M (245 X5))||
2 e

= Can focus on this term to understand entire
optimization.
Total number of residuals n = number of silhouette points.
Say 300N (N = number of images) = 10,000

Total number of unknowns 2n + KN + m where
m =~ 3K X number of vertices =~ 3,000

CONTINOUS OPTIMIZATION 8 Microsoft 173



This is true, but misleading

INITIAL ESTIMATE FOR MEAN SHAPE & Microsoft 274



<TABAINT Y
=P
N ‘ﬂ') R—

True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.

INITIAL ESTIMATE FOR MEAN SHAPE & Microsoft 275
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Morphable model parameters:



EXAMPLE RESULTS 2 Microsoft
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(a) Initial estimate. {b) Only continuous local optimiza- (c) As (b). but including iterations (d) As (c), but with reparametriza-
tion, as described in Sec. 4.1. of our global search (Sec. 4.2). tion around extraordinary vertices.




NUMBER OF IMAGES & Microsoft 180



“Pixel” terms: noise level params

— ?=1(El:si1+Einorm _I_Eicon)

“Dimensionless” terms

L + )

“Smoothness” terms

t t
ggEOp + f%lef Z?=1 En’lz)

&o

{ael

0.05

0.25

0.5
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r? r2
PY(x) = minw?x? + (1 —w?)? = f(x) = ?(2 —7>, x <0
w
1' x =0

Y(x) = mMi}n d(x,w) [Z6llhofer et al '14]

d(x,w) = w?x? + (1 — w?)?

[Li, Sumner, Pauly '08]

0.5}

0 , . e T |75 e ae
-1 —0.5 0 0.5 1 -3 -2 -1 0 1 2 3
Red: Tukey’s biweight
Blue: “Lifted” kernel ¥

CONVERGES FASTER, FROM FARTHER AWAY e



Robust estimation

[BLACK AND RANGARANJAN, CVPR 91] - NEARLY
[LI, PAULY, SUMNER, SIGGRAPH 08] - NEARLY
[ZOLLHOFER, SIGGRAPH 14] — BASICALLY
[ZACH, ECCV 14] — DEFINITELY

» Microsoft
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How do I fit a line to data samples s; = (x;,y;)?

For this example, let us suppose true inlier model is
y=a;x+a,+N(0,0)

Alg.1: @ = [x ones(x)]\y

ag.2.@ = argmin Y,;(y; — a,x; — a,)*
a



°Q

% @

Qo

How do I fit a line to data samples s; = (x;,y;)?

For this example, let us suppose true inlier model is
y=a;x+a,+N(0,0)

Alg.1: @ = [x ones(x)]\y

ag.2.@ = argmin Y,;(y; — a,x; — a,)*
a

>> a = 1lsqgnonlin(@(a) y - a(l)*x - a(2), [1 1]):;

Works really well because objective is sum-of-squares



Qo

But | have “outliers” ®

How do I fit a line to data samples s; = (x;,y;)?

For this example, let us suppose true inlier model is
y=ax+ b+ N(0,0)

Alg. I =

Alg.2:@ =7




2.5
2 °
o
1.5 o’
e
1 o
g
0.5 °
o
0 %
0 1

How do I fit a line to data samples s; = (x;,y;)?

For this example, let us suppose true inlier model is
y=ax+ b+ N(0,0)

Alg.1: @ = [x ones(x)]\y

Alg.2:@ = argmin ),; Y(y; — a1 x; — ay)
a

>> a = fminunc(@(a) sum(psi(y — a(l)*x - a(2))),
11)

[1



25
2 °
a
15 ®’
o°
1 o®
&
0.5 @
(-]
0 Q

min Yy — ax; - ay)
i

/ Global minimum in a good place

But hard to optimize:
* Multiple optima
* Huge flat spots




Robust kernels can be expressed as minimization
over “outlier process” variables [e.g. Geman &
Reynolds ‘92, Black & Rangarajan ‘95]

d(x,w) = w?x? + (1 — w?)?

$() = min ¢ (x, w)

IS

contours of ¢
aro 3 ]
argmin o(W,X)

E

R

S
e

R /f\ T

E

il AT ' 0
e
3 @ 4 6 1 2 3

X




Data residual for ith data point: fila) =y; —a;x; —a,

“Lifted” robust kernel: d(x,w) = w?x? + (1 — w?)?
Gives kernel: Y(x) = min¢p(x,w)
w

And original nasty problem: min Y,; Y(f;(a))
a

2.5 > TSRS <
v V& V /‘ 4 A S
PARERS // 27| <& contours of
= = 2 2 2 2 2 s /// /////// argmin  G(W.x) K
Becomes: min),; minw*f*(a)+ (1 —w*) [ s
a w NS ST NNy g
2 05 :«; /ﬁ’/:’////{\/\ \\"E',\/}\\\\\‘: ‘::\\\:::.
: : 22 2 "~ B R T A T
min );; minw{ f;*(a) + (1 — w; e e
a Wi

2
minmin Y,; w? f#(a) + (1 — w?) '
a Wi

Which is in the Gauss-Newton form... e



r? r2
1/J(x)=mvénwzx2+(1—w2)2:f(x): ?(2—7) x <0

1, x=0
Y(x) = min ¢p(x,w) [Z6lIhofer et al “14]
w
d(x,w) = w?x? + (1 —w?)? [Li, Sumner, Pauly ’08]

0.5}

Blue: “Lifte

0 ' reeran st EET ot ETINNNN, : i 1
-1 —0.5 0 0.5 1 -3 -2 1 5 |

196



3D reconstruction datasets: up to 10® parameters, 10® measurements

—e— [nitial =
0.21"| = IRLS 0.8 b ¥ \\/
—e— Triggs g oo
—e— l: X
0.15 f 0.6 " “4
—e— Lifted O1"| —e— Initial
s [RLS \\ - /
o Triges \
0.1 04H o /7 g g
A \
—+—Lifted v
1 2 3 4 5 6 1 2 3 4 5 6
Dataset number Dataset number

Before [Zach '14], no-one used the Gauss-Newton structure, so never beat IRLS (iterated
reweighted least squares), with its ICP-like convergence.



Robust kernels can be expressed as minimization over “outlier process”
variables [e.g. Geman & Reynolds ‘92, Black & Rangarajan ‘95]

Residual r; passes through robust kernel Y (1), e.qg.

2
P(r) =

e mSin(Szr2 + (1 -15)%)
And

min > w(r(®)) -, min Zgb(n(e) )
=1

But until [Zach '14], no-one used Gauss-Newton structure of RHS, so never beat
IRLS (iterated reweighted least squares), with its ICP-like convergence.

BUNDLE ADJUSTMENTWITHROBUST KERNELS & Microsoft



Robust kernels can be expressed as minimization over “outlier process”
variables [e.g. Geman & Reynolds ‘92, Black & Rangarajan ‘95]

Residual r; passes through robust kernel Y (1), e.qg.

2
W(r) = 1412

141

2

12+
1=

0.8

| 0.6 w»»f;;»f‘i;e -
-5 ; E

0.2

0

BUNDLE ADJUSTMENTWITHROBUST KERNELS m Microsoft



Figure 4: Robust kernel (Sec. 5.1.2). (a) Our kernel 1)(¢) (blue) has
similar shape to the standard Tukey's biweight kernel (red). (b) A 2D
line fitting problem with two minima. Data points y; ~ mx; + ¢. (¢)
Energy landscape of f(m,c) = >, ¥(yi —max;—c) is complicated.

(d) 3D slice through (2+n) dimensional landscape of lifted function
' -— 2 2 2\2 &
F(m,c,wy,...,wn) = > wi(yi — mxi —¢)* + (1 —wy)® is
simpler. Minimization of lifted F' found the global optimum on
82.4% of runs, in contrast to 43.0% on two-parameter [, which also

had 20.1% outright failures vs. 0% on lifted.
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SUBDIV PECULIARITIES 1: PIECEWISE DOMAIN

» Microsoft




= Parameter
domain Qisin
pleces
Typically not
unwrappable to a
plane

PIECEWISE DOMAIN B Microsoft 204



= Parameter domain (): pieces with connectivity graph

PIECEWISE DOMAIN & Microsoft



= Atpointu = (p,u,v)

= Easyto getdirectiond
from M, etc.

= Butneedu + A6

Override ceres: :Evaluator: :Plus

= Easy inside patch

= Need outside too v .

PIECEWISE DOMAIN 8 Microsoft 206



= Atpointu = (p,u,v)
= Needu + A6
= Qutside patch:

Move distance 7 to edge

Change direction

Moved — T

Repeat in next patch !

PIECEWISE DOMAIN § Microsoft 207



= Atpointu = (p,u,v)
= Needu + A6
= Qutside patch:

Move distance 7 to edge

Change direction
Moved — 1

Repeat in next patch

PIECEWISE DOMAIN ’ e B Virosoht o
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EXAMPLE: SINGLE CLOSEST POINT PROBLEM s Microsoft



E(w) = ||s — M(u,X)|| /‘S

N
\ N
N N~ N
N Y
AN <
N : \
W N
N \
"
N ! -
- i S SN o
[ \ \.-\\ \._\
N N\ \
X AN \ R
\ N W N
\ h N N \
W W N\ \
"N N A\ A\
Y N R, N
" = - -

EXAMPLE: SINGLE CLOSEST POINT PROBLEM s Microsoft



SUBDIV PECULIARITIES 2: EXTRAORDINARY VERTICES

» Microsoft




= Any vertex of valency # 6 is an “extraordinary vertex”
Call a triangle with an EV an “irregular triangle”

= Normals and surface at EVs well defined and well
behaved

But spline evaluation rule is not...

= Solution: virtually subdivide irreqular triangles
Each green element is still linear in X, quarticinu, v
Need to generate different A;j;, for ¥, 4;j,u'v/ Xy

All autogenerated C code using Sympy
Go to depth 5, and then handle “vestigial patch”
Initially just use spline coeffs from neighbour

EXTRAORDINARY VERTICES & Microsoft



o1et Gudrle” oS

95T dable*

et dockle® 29,

ot double® nl@,

T double® all,
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*£10 - 0.101200L0¢

» Microsoft



SUBDIV PECULIARITIES 2: VANISHING DERIVATIVES

» Microsoft




“Neighbour extrapolation” for vestigial patch looks OK visually,
but EVs have other issues:

= Vanishing first derivatives: liri}v M,(u,X)=0
u-—

Saddle point for gradient-based optimization.
= Unbounded second derivatives
Infinite thin-plate energy (inconvenience).

Derivatives with respect to normal, although well defined, are
unstable using chain-rule (inconvenience).

= Solutions

Reparameterise the function near the extraordinary vertex.
Replace the function near the extraordinary vertex.

THEVESTIGIAL PATCH 3 Microsoft



Example bad parameterization:

m(s) = (x,y) = (Vs,sin(vs))  s€R?

m'(9) = §2() = (55,5

= lirrg m'(s) — (oo, )
S—

Reparameterise s = t*
m(t) = (x,y) = (¢ sin(t))
m'(£) = 57 (¢) = (1, cos(1))

= }:im m.(t) - (1,1)

-0

REPARAMETERISING TO FIX DERIVATIVES Wl



= Using subdivs is easy
The messy stuff is encapsulated in Eval_M*(), and Plus()
Google’s "Ceres” solver does all the Levenberg-Marquardt

= Continuous optimization often doesn’t need a very good
initial estimate

= Using subdivs allows correspondences u; to update during
the optimization
If ICP takes a long time, this may not...
But you must exploit sparsity
= Future work:
Dogs, hinted ARAP, skeleton, even more speed, ...

CONCLUSIONS ETC 8 Microsoft 237



= Seen afew students nastily bitten by collapsing meshes

= So what's changed? How do | get bitten by the bug, not the hornet?
Sum over data, not model
Use modern (2006) regularizers
Vary everything
Define clean interpolants

FITTING MESHES B Micosoft 215



T CLOsED Form'” socuTions OFTEN SOLLE A NVEARRY  CONVEX PRORLeA,
— So  Dors Awg 2P oudew. ©OPTIMIZER .
— [F You HAVE Found A QuADRATIC SURPReRLem SO WiLe Levingens -Maga

\ -
—_ /ou CAan) DIFFElenTI AT T OV Gry P:Zz’/'\“g; My ANG THINE .

— SCcALANG S IMmeorTans .  Measwre 1o MaTvam OMITS.

Finite diffs fine, just expensive

Myths: you don't need to find the optimum
Parameter tuning

Constrained optimization

CONCLUSIONS 8 Microsoft 219



