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LEARN HOW TO SOLVE HARD VISION PROBLEMS, 
USING TOOLS THAT MAY APPEAR INELEGANT, 
BUT ARE MUCH SMARTER THAN THEY LOOK.

Goal
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APPLICATIONS

Curve/surface fitting Parameter estimation “Bundle adjustment”
(Video from our friends at Google)



FITTING 3D SHAPE BASES 5

Blanz & Vetter
Siggraph 1999



FITTING 3D SHAPE BASES 6

Anguelov et al.
Siggraph 2005



WHAT DO I MEAN BY SHAPE? 7

Learning an Efficient Model of Hand Shape Variation from Depth Images
Khamis et al, CVPR15

𝑋 𝛽; 𝑽
𝐿(𝛽; 𝑳)

Shape Space

𝑃(𝜃; 𝑋 𝛽, 𝑽 , 𝐿 𝛽, 𝑳 )

𝑀 P 𝜃; 𝑋 𝛽, 𝑽 , 𝐿 𝛽, 𝑳

𝛽
Select shape 𝛽

Apply pose 𝜃

Apply subdivision



FITTING HANDS TO 3D DATA
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IMAGE DENOISING 10[STRANDMARK & AGARWAL, 2014, arXiv:1403.5590]



FITTING SUBDIVISION SURFACES TO 2D DATA



FITTING SUBDIVISION SURFACES TO 2D DATA



FITTING POLYGON MESHES TO VIDEO
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[3D Scanning Deformable Objects with a Single RGBD Sensor, Dou et al, CVPR15]

Input Kinect Stream KinectFusion Deformable Fusion



KINÊTRE 15



KINÊTRE 16



KINÊTRE 17



REALTIME MESH FITTING TO 3D 18



NONRIGID STRUCTURE FROM MOTION

𝒘11 𝒘12 ⋯ 𝒘1𝑛

𝒘21 𝒘22 ⋯ 𝒘2𝑛

⋮ ⋮ ⋱ ⋮
𝒘𝑇1 𝒘𝑇2 ⋯ 𝒘𝑇𝑛

←
T
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NONRIGID STRUCTURE FROM MOTION

 Affine rigid: linear 
embedding into ℝ3, solved with 
Wiberg / bundle adjustment

 Perspective rigid: (slightly) 
nonlinear embedding into ℝ3

solved with bundle adjustment

 Nonrigid: linear embedding 
into ℝ3𝐾, [with nonlinear constraints]

 Kernel nonrigid/Trajectory bases: 
nonlinear/basis function 
embedding into ℝ𝑘

 Unwrap mosaic: nonlinear 
embedding into ℝ2

𝒘11 𝒘12 ⋯ 𝒘1𝑛

𝒘21 𝒘22 ⋯ 𝒘2𝑛

⋮ ⋮ ⋱ ⋮
𝒘𝑇1 𝒘𝑇2 ⋯ 𝒘𝑇𝑛



“UNWRAP MOSAICS”





MATRIX FACTORIZATION [HONG & F., ICCV 15]



MATRIX FACTORIZATION [HONG & F., ICCV 15]



MYTH: YOU DON’T NEED TO OPTIMIZE FAR 25



BUT POINTS ARE TOO EASY…



clownfish



OBJECT CATEGORY MODELS



SHAPE FROM CURVES











34





 The shape from silhouette problem, even for multiple 
images of the same structure, was not adequately solved 
before

 Why?
1. The discovery of the fundamental matrix and closed form 

solutions to various geometry problems revolutionized computer 
vision…

2. …and distracted us from easy problems like this one.

 Behind every “closed form” solution (ellipse fitting, 
F+radial), there’s a perfectly good nonlinear minimization 
solution you could have used instead
 unless you are in the extreme speed domain [see Kukelova et al]
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Write energy describing the image collection

෍

𝑓=1

𝐹

𝐸data 𝐼𝑓 , 𝜽𝑓 + 𝐸reg 𝜽𝑓 , 𝜽core

Where:

𝜽𝑓 are (unknown) parameters of surface model in frame 𝑓

𝜽core are (unknown) parameters of some shape model (e.g. linear 
combination) and 𝐸reg measures distance, e.g. ARAP

And optimize it using Levenberg-Marquardt 

 (i.e. any Newton-like algorithm, making maximum use of problem 
structure)

FOR EACH TASK, THE METHOD IS THE SAME 37



 So, you can do lots of things by “fitting models to 
data”.

 How do you do it right?

 Let’s look at some examples.
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EXAMPLE: SHAPE FITTING
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SHAPE QUIZ 40

t = 0:.01:2; 

plot(cos(t)*2, sin(t)); 



SHAPE QUIZ 41

t = 0:.01:2; 

plot(cos(t)*2, sin(t)); 



SHAPE QUIZ 42

>> u = 0:.1:2*pi; v= 0:.1:2*pi;
>> l = ones(size(v));
>> u = u'*l;
>> v = l'*v;
>> plot3(cos(u), sin(u), v, 'k.')



SHAPE QUIZ 43

>> u = 0:.1:2*pi; v= 0:.1:2*pi;
>> l = ones(size(v));
>> u = u'*l;
>> v = l'*v;
>> plot3(cos(u), sin(u), v, 'k.')



What is a shape?
• Functions

• Curves

• Surfaces

44



A SHAPE IS A FUNCTION

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)

45
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A SHAPE IS A FUNCTION

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)
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SHAPES DESCRIBE DATA47



SHAPES DESCRIBE DATA48

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑



SHAPES DESCRIBE DATA49

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = sin 𝑥 + 𝑎𝑥 + 𝑏



SHAPES DESCRIBE DATA50

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = if 𝑥 < 𝑎
𝑥 − 𝑏 2 + 𝑐

else
− 𝑥 − 𝑑 2 + 𝑒



A SHAPE IS A FUNCTION51
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FUNCTIONS OVER DOMAINS Ω

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)
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CURVES

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)
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PARAMETERIZED SHAPES

abstract Curve {

method eval(t::Interval)::Point2D

};

54



PARAMETERIZED SHAPES55
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abstract Curve {

method eval(t::Interval)::Point2D

};

type Conic < Curve {

eval(t) = 

Point2D(t^2 + 2, t^2 – t + 1)

};



PARAMETERIZED SHAPES

abstract Curve {

method eval(t::Interval)::Point2D

};

type Conic < Curve {

ϴ::Real[]; // Shape parameters

eval(t) = 

Point2D( ϴ[0]*t^2 + ϴ[1]*t + ϴ[2], 

ϴ[3]*t^2 + ϴ[4]*t + ϴ[5] )

};

Conic([1,0,2,1,-1,1])
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

57

closest point

x



OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

distance(x) = norm(x – this.closest_point(x))

58
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

distance(x) = 

minimize(λ(t) norm(this.eval(t) – x), 0.0)

59
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

...

function f(t) = norm(this.eval(t) – x)^2

distance(x) =  minimize(f, Interval::Min)

function minimize(f, t) 

while not converged

t -= 𝜶 * f’(t)  // Compute derivative

60
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OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method eval’(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

}; 

61

closest 
point

x

𝑦 = if 𝑡 < 𝑎
𝑡 − 𝑏 2 + 𝑐

else
𝑓 𝑡 − 𝑑 2 + 𝑒

𝑦′ = if 𝑡 < 𝑎
2(𝑡 − 𝑏)

else
2𝑓(𝑡 − 𝑑)



Shape, meet thy data
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min
𝜃

෍

𝑛=1

𝑁

𝐶 𝜃 . closest_point(𝒔𝒏)

Sum-of-min problems

𝒔𝑛

A MORE GENERAL PROBLEM CLASS



AN EXEMPLARY PROBLEM

64

“Based on a true story”, not necessarily historically accurate

Note well: this problem is a good proxy for much more realistic problems: 

1. Stereo camera calibration

2. Multiple-camera bundle adjustment

3. Surface fitting, e.g. subdivision surfaces to range data, realtime hand tracking

4. Matrix completion

5. Image denoising.

[Inspired by Neil Lawrence’s professorial inaugural]



AN EXEMPLARY PROBLEM

The year: 1801
The hot topic: A “guest planet”, named Ceres
The big question: Where will it reappear?



AN EXEMPLARY PROBLEM



AN EXEMPLARY PROBLEM

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Sample 𝒔𝑛



WE KNOW THE EXACT FORM OF THE MODEL 68

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Known model: Points lie on an ellipse

Clear(ish) objective:  
Estimate the ellipse parameters, intersect with circle of sun, achieve fame



AND ESTIMATING IT WELL GETS US CLOSE… 69



RUNNING AN OFF-THE-SHELF FITTER DOES NOT. 70

“Direct least squares fitting of ellipses”
[Fitzgibbon et al, 1999]

Does not minimize “sum of distances” 
objective, but a “nearby” convex objective



WE KNOW THE EXACT FORM OF THE MODEL 71

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at unknown times 𝑡𝑛

Known model: Points lie on an ellipse
𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Sample 𝒔𝑛



A PARAMETRIC FUNCTION AND A CURVE 72

A parametric description

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Defines a curve (a set of points in ℝ2)

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

Potential confusion: curve parameter 𝑡 and 
shape parameter vector 𝜽.  This should be ok for 
this talk.

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6



DISTANCES AND CLOSEST POINTS 73

Sample 𝒔𝑛

All our algorithms will start with a guess of 𝜽 and 
refine it.

We will often want to think about the distance of 
a sample 𝒔 from the curve 𝐶(𝜽).

Often, closest point is appropriate. 
[Others easily handled too.]

𝐷 𝒔, 𝜽 ≔ min
𝒙∈𝐶 𝜽

𝒔 − 𝒙 2

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋



A BETTER ESTIMATE 74

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Minimize over all ellipses 𝜽

𝜽∗ ≔ argmin
𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽

Just using an off-the-shelf optimizer.



75

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Sample 𝒔𝑛



AND ESTIMATING IT WELL GETS US CLOSE… 76



SO ARE WE DONE YET?

 We have an accurate solution
 Certainly better than the “closed form” algorithm, which minimized a “nearby” convex 

objective.

 All we need to worry about now is speed…
 If you take 3 weeks to make a prediction, someone else will get the fame.

 Speed is everything.  If speed didn’t matter, you would just use random search.

 Strategies to speed it up
 Attack the inner loop

 Remove discrete minimization in 𝐷(𝒔, 𝜽)

 Analyse the problem again

 Understand our tools: ‘fminunc’, or whatever we’re using

 Compute analytic derivatives

77



SPEED RESULTS: SNEAK PREVIEW

A slow method A fast method, slowed down 10x



SPEEDUP 1: ATTACK THE INNER 
LOOP

79



SPEEDUP 1: ATTACK THE INNER LOOP 80

𝒔



SPEEDUP 1: ATTACK THE INNER LOOP 81

𝒔

𝐷 𝒔, 𝜽 = min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Define 𝐸(𝑡) = 𝒔 − 𝒄(𝑡; 𝜽) 2

Set 
𝑑𝐸

𝑑𝑡
= 0

Yields 4th order polynomial, extract 4 roots.

Much cheaper than previous 
implementation.

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6



SPEEDUP 2: ANALYSE THE 
PROBLEM

82



LOOK AT THE PROBLEM AGAIN 83

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Minimize over all ellipses 𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽 =෍

𝑛

min
𝑡

𝒔𝑛 − 𝒄 𝑡; 𝜽 2

Notice 𝒄 𝑡; 𝜽 is linear in 𝜽, so function is 

=෍

𝑛

min
𝑡𝑛

𝒔𝑛 − 𝐴 𝑡𝑛 𝜽 2

And we can solve in closed form:
• for T = 𝑡𝑛 𝑛=1

𝑁 given 𝜽. Cost 𝑁 RootOfs.
• and 𝜽 given 𝑇. Cost one linear solve.

So alternate—“ICP”, “EM”, “Block Coordinate 
Descent”

𝜽∗ ≔ argmin
𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽



bad decision…
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CONVERGENCE RATES

ICP, a bad 1st-order method A second order method, slowed down 10x



CONVERGENCE CURVES
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“Previous iteration” convergence test 

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘−1 < 𝜏 will stop here.

“Half the time ago” convergence test

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘/2 < 𝜏 will stop here.



AH, BUT WHAT ABOUT TEST ERROR?
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෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑢

𝑓𝑛 𝑢, 𝜃



෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑢

𝑓𝑛 𝑢, 𝜃

= argmin
𝜃

෍

𝑛

min
𝑢𝑛

𝑓𝑛 𝑢𝑛, 𝜃



෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑡
𝑓𝑛 𝑢, 𝜃

= argmin
𝜃

෍

𝑛

min
𝑢𝑛

𝑓𝑛 𝑢𝑛, 𝜃

= argmin
𝜃

min
𝑢1..𝑁

෍

𝑛

𝑓𝑛 𝑢𝑛, 𝜃

[Recall that:      min
𝑥

𝑓 𝑥 +min
𝑦

𝑔(𝑦) = min
𝑥,𝑦

𝑓 𝑥 + 𝑔(𝑦)]



SUMMARY: TWO METHODS, SAME OBJECTIVE෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝒖

𝑓𝑛 𝑢, 𝜃

 Nasty objective

 𝑀 parameters

 Cost per iteration 𝑂 𝑁

Slow

෠𝜃 = argmin
𝜃

min
𝒖1..𝑁

෍

𝑛

𝑓𝑛 𝑢𝑛, 𝜃

 Simple objective (no “min”)

 𝑀 +𝑁 parameters

 Cost per iteration 𝑂(𝑁𝑀𝑟)

Fast

(in actual real-world wall clock time, even for very large 𝑁)



CONVERGENCE RATES

ICP, a bad 1st-order method A second order method, slowed down 10x



SPEEDUP 3: UNDERSTAND OUR 
TOOLS
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Matlab’s fminunc is one of many nonlinear optimizers.

Takes function 𝑓 𝒙 :ℝ𝑑 ↦ ℝ, initial estimate 𝒙0

General “trust-region” class of strategies repeats:

• Compute update 𝜹𝑘 to current guess 𝒙𝑘
• Using function, derivatives, “trust region radius”, herbs, spices, …

• If update produces lower 𝑓 value
• “accept”: update 𝒙𝑘+1 = 𝒙𝑘 + 𝜹𝑘

Else 
• “reject”: fiddle with “trust region radius”
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ASIDE…

CONTINUOUS 
OPTIMIZATION

Andrew Fitzgibbon
Microsoft Research Cambridge



GOAL

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ,

Devise strategies for finding 𝑥 which minimizes 𝑓

• Gradient descent++: Stochastic, Block, Minibatch

• Coordinate descent++: Block

• Newton++: Gauss, Quasi, Damped, Levenberg Marquardt, dogleg, Trust 
region, Doublestep LM, [L-]BFGS, Nonlin CG

• Not covered
• Proximal methods: Nesterov, ADMM…



CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓



CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓
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quadratic

convex

quasiconvex

multi-
extremum



100

quadratic

convex

quasiconvex

multi-
extremum

Easy Hard



DERIVATIVES

 Fast minimization depends on derivatives
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EXAMPLE

x
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EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

>> print -dmeta



EXAMPLE

>> print –dpdf % then go to pdf and paste
OR
>> set(findobj(1, 'type', 'line'), 'linesmoothing', 'on') % then screengrab



EXAMPLE

>> set(gcf, 'paperUnits', 'centimeters', 'paperposition', [1 1 9 6.6])
>> print –dpdf % then go to pdf and paste



SWITCH TO MATLAB…



ALTERNATION

Easy Hard



GRADIENT DESCENT

 Alternation is slow 
because valleys may not 
be axis aligned

 So try gradient descent?
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GRADIENT DESCENT

 Alternation is slow 
because valleys may not 
be axis aligned

 So try gradient descent?



GRADIENT DESCENT

 Alternation is slow 
because valleys may not 
be axis aligned

 So try gradient descent?

 Note that convergence 
proofs are available for 
both of the above

 But so what?



AND ON A HARD PROBLEM



USE A BETTER ALGORITHM

 (Nonlinear) conjugate 
gradients

 Uses 1st derivatives only

 Avoids “undoing” 
previous work



USE A BETTER ALGORITHM

 (Nonlinear) conjugate 
gradients

 Uses 1st derivatives only

 And avoids “undoing” 
previous work

 101 iterations on 
this problem



BUT WE CAN DO BETTER…



USE SECOND DERIVATIVES…

 Starting with 𝒙 how can I choose 𝜹
so that 𝑓 𝒙 + 𝜹 is better than 𝑓(𝒙)?

 So compute
min
𝜹∈ℝ𝑑

𝑓 𝒙 + 𝜹

 But hang on, that’s the same problem we were trying to 
solve?



USE SECOND DERIVATIVES…

 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 So compute
min
𝛿

𝑓 𝑥 + 𝛿

≈ min
𝛿

𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2𝛿

⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)



USE SECOND DERIVATIVES…

 How does it look?

𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2
𝛿⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)



USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹

𝑓 + 𝜹⊤𝑔 + 1
2𝜹

⊤𝐻 𝜹

[derive]



USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹

𝑓 + 𝜹⊤𝑔 + 1
2𝜹

⊤𝐻 𝜹

𝜹 = −𝐻−1𝑔



IS THAT A GOOD IDEA?

>> use demos

>> demo_taylor_2d(0, 'newton', 'rosenbrock')

>> demo_taylor_2d(0, 'newton', 'sqrt_rosenbrock')

>> demo_taylor_2d(1, 'damped newton ls', 'rosenbrock')



USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Updates:
𝜹Newton = −𝐻−1𝑔

𝜹GradientDescent = −𝜆𝑔



USE SECOND DERIVATIVES…

 Updates:
𝜹Newton = −𝐻−1𝑔

𝜹GradientDescent = −𝜆𝑔

 So combine them:
𝜹DampedNewton = − 𝐻 + 𝜆−1𝐼𝑑

−1𝑔

= −𝜆 𝜆𝐻 + 𝐼𝑑
−1𝑔

 𝜆 small ⇒conservative gradient step

 𝜆 large ⇒Newton step



UPDATING 𝜆

𝜆 = 10−3; 𝜆′ = 3;

while 𝜆 < 109

𝑓, 𝒈,𝑯 = error_function(𝒙𝑘) % Perhaps Gauss-Newton for H

𝜹 = − 𝑯+ 𝜆𝑰 \𝒈 % Many ways to do this efficiently

𝒙𝑛𝑒𝑤 = 𝒙𝑘 + 𝜹

if error_function(𝒙𝑛𝑒𝑤) < 𝑓: 

𝒙𝑘 = 𝒙𝑛𝑒𝑤 % Decreased error, accept the new 𝑥

𝜆 = 𝜆/𝜆′; 𝜆′ = 3 % Doing well—decrease 𝜆

else

𝜆 = 𝜆𝜆′; 𝜆′ = 3𝜆′ % Doing badly—increase 𝜆 quick



1ST DERIVATIVES AGAIN

Levenberg-Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

 where 𝑓𝑖(𝑥) are 

 zero-mean

 small at the optimum



BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

𝛻𝑓 𝑥 =

𝛻𝛻⊤𝑓 𝑥 =



BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

𝛻𝑓 𝑥 =෍

𝑖

2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)

𝛻𝛻⊤𝑓 𝑥 = 2෍

𝑖

𝑓𝑖 𝑥 𝛻𝛻⊤𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻
⊤𝑓𝑖 𝑥



ORDER N CUBED?

 Not 𝑂 𝑛3 if you exploit sparsity of Hessian or 
Jacobian

J =
𝛻𝑓1(𝑥)

⋮
𝛻𝑓𝑛(𝑥)



TYPICAL HESSIAN STRUCTURE



CONCLUSION: YMMV



CONCLUSION: YMMV

GIRAFFE

500 runs

for k=1:500
𝑥0 = 𝑟𝑎𝑛𝑑𝑛 𝑛, 1 ;
𝑥∗ = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓, 𝑥0 ;
𝐸 𝑘 = 𝑓 𝑥∗

end
plot(sort(E));



CONCLUSION: YMMV

FACE

1000 runs

DINOSAUR

1000 runs

GIRAFFE

500 runs



 On many problems, 
alternation is just fine
 Indeed always start with a 

couple of alternation steps

 Computing 2nd derivatives is 
a pain
 But you don’t need to for LM

 But just alternation is not
 Unless you’re willing to 

problem-select

 Convergence guarantees 
are fine, but practice is 
what matters

 Inverting the Hessian is 
rarely 𝑂(𝑛3)

There is no universal optimizer



ON FINITE-DIFFERENCE DERIVATIVES

 𝛻𝑓 =
1

𝜇

𝑓 𝑥 + 𝑒1 − 𝑓(𝑥)
⋮

𝑓 𝑥 + 𝑒𝑑 − 𝑓(𝑥)

 Surprisingly accurate for e.g. 𝜇 = 10−5 (in double prec.)

 Incredibly slow.. Unless (see next slide)

 Useful for checking your analytic derivatives

 Incredibly slow.  Try Powell or Simplex instead.

 Central differences twice as slow, somewhat more accurate



GRAPH COLOURING FOR FINITE DIFFS

 Normally try 𝑒1 to 𝑒𝑑 sequentially

 But if we know the nonzero structure of the Jacobian, 
can go rather faster.
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ON SCALING

 We’re minimizing 𝑓(𝑥)

 Many algorithms will be happier if entries of 𝑥 are all 
“around 1”.

 E.g. don’t have angle in degrees and distances in km

 Many algorithms may want 𝑓 values to be “close to 
𝑥 or close to zero at the optimum”.

 Specifically, think about roundoff in quantities like 𝑓 𝑥𝑘+1 −
𝑓 𝑥𝑘 being compared to numbers like 10−6



QUESTIONS

 What about stochastic gradient descent?

 You can do analogous 2nd order things.

 What about LBFGS?

 I haven’t had much success with it, other folk love it…

 I tried lsqnonlin and it was really slow—why?

 Wrong derivatives (e.g. finite-differences)

 Didn’t use sparsity correctly

 Didn’t set “options.Algorithm” or “options.LargeScale”.



 Resources:

1. Matlab fminsearch and fminunc documentation

2. awful.codeplex.com au_optimproblem

3. Tom Minka webpage on matrix derivatives

4. Google “ceres” solver

5. UTorono “Theano” system for Python



 Gotchas with lsqnonlin
 opts.LargeScale = 'on';

 opts.Jacobian = 'on';

 Need non-rank-def J?

 Need to implement JacobMult?



WHAT IS A SURFACE?
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0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

CURVES

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D = 

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D = 

Point3D(cos(u), sin(u), v)
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 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

SURFACE 145

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣



 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

 Probably not all of ℝ2, but a subset Ω

 E.g. square Ω = 0,2𝜋 × [0,𝐻]

 But also any union of patch domains Ω = ሪ
𝑝
Ω𝑝

SURFACE 146

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣



 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

 Probably not all of ℝ2, but a subset Ω

 E.g. square Ω = 0,2𝜋 × [0,𝐻]

 But also any union of patch domains Ω = ሪ
𝑝
Ω𝑝

 And we’ll look at parameterised surfaces 𝑆 𝒖; Θ

 E.g. Cylinder 𝑆 𝑢, 𝑣; 𝑅, 𝐻 = 𝑅 cos 𝑢 , 𝑅 sin 𝑢 , 𝐻𝑣
with Ω = 0,2𝜋 × 0,1

 E.g. subdivision surface 𝑆 𝒖; 𝑋
where Θ = 𝑋 ∈ ℝ3×𝑛 is matrix of control vertices

SURFACE 147

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣



TOOL: SUBDIVISION SURFACES
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CONTROL MESH 149

Control mesh vertices  𝑋 ∈ ℝ3×𝑚

Here 𝑚 = 16



LIMIT SURFACE 150

Control mesh vertices  𝑋 ∈ ℝ3×𝑚

Here 𝑚 = 16



SUBDIV RULE: STEP 1. ADD NEW VERTICES 151



SUBDIV RULE: STEP 2. AVERAGE NEIGHBOURS 152



2  SUBDIVISIONS 153



3  SUBDIVISIONS 154



LIMIT SURFACE 155

Control mesh vertices 𝑉 ∈ ℝ3×𝑚

Here 𝑚 = 16
Blue surface is 𝑀 𝒖;𝑉 | 𝒖 ∈ Ω
Ω is the grey surface



CONTROL VERTICES DEFINE THE SHAPE 156

Control mesh vertices 𝑉 ∈ ℝ3×𝑛

Here 𝑛 = 16
Blue surface is 𝑀 𝒖;𝑉 | 𝒖 ∈ Ω
Ω is the grey surface



 Mostly, 𝑀 is quite simple:

𝑀 𝒖;𝑋 = 𝑀 𝑡, 𝑢, 𝑣; 𝒙1, … , 𝒙𝑛 = ෍
𝑖+𝑗≤4
𝑘=1..𝑛

𝐴𝑖𝑗𝑘
𝑡 𝑢𝑖𝑣𝑗𝒙𝑘

 Integer triangle id 𝑡
 Quartic in 𝑢, 𝑣
 Linear in 𝑋
 Easy derivatives

 But…
 2nd Derivatives unbounded although normals well defined
 Piecewise parameter domain

SUBDIVISION SURFACE: PARAMETRIC FORM 157



EXAMPLES 158



BACK TO DOLPHINS

159



MODEL REPRESENTATION

𝑋𝑛 = ෍

𝑘=0

𝐾

𝛼𝑖𝑘ℬ𝑘

𝛼𝑖1 ℬ1 𝛼𝑖2 ℬ2+ +𝑋𝑖 =

Linear blend shapes: 
Image 𝑖 represented by coefficient 
vector 𝜶𝑖 = 𝛼𝑖1, … , 𝛼𝑖𝐾

ℬ0
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164



𝒔𝑖𝑗 2D point

𝒏𝑖𝑗 2D normal

DATA TERMS

Image 𝑖

𝒖𝑖𝑗 Contour generator

preimage in 𝛀
(unknown)

c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖
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𝒔𝑖𝑗 2D point

𝒏𝑖𝑗 2D normal

DATA TERMS

Image 𝑖

𝒖𝑖𝑗 Contour generator

preimage in 𝛀
(unknown)

c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖

168



DATA TERMS

Image 𝑖

𝒔𝑖𝑗 , 𝒏𝑖𝑗

169

Camera 
position

Silhouette:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖

𝒔𝑖𝑗 − 𝜋 𝜃𝑖 , 𝑀 𝑢𝑖𝑗 , 𝑿𝑖

2

Normal:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖
𝒏𝑖𝑗
0

− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗 , 𝑿𝑖

2

Projection
e.g. Perspective



DATA TERMS

Image 𝑖

𝒔𝑖𝑗 , 𝒏𝑖𝑗

Linear Blend Shapes (PCA) Model:

𝑿𝑖 =෍

𝑘

𝛼𝑖𝑘𝑩𝑘

170

Silhouette:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖

𝒔𝑖𝑗 − 𝜋 𝜃𝑖 , 𝑀 𝑢𝑖𝑗 , 𝑿𝑖

2

Normal:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖
𝒏𝑖𝑗
0

− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗 , 𝑿𝑖

2



Data fidelity 
terms

𝑝 𝐼 𝑋𝑖; 𝑈

Gaussian shape 
weights

Smooth 
contour

Smooth Basis
𝑝 𝚯
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CONTINOUSOPTIMIZATION

 Can focus on this term to understand entire 
optimization.

 Total number of residuals 𝑛 = number of silhouette points.  
Say 300𝑁 (𝑁 = number of images) ≈ 10,000

 Total number of unknowns 2𝑛 + 𝐾𝑁 +𝑚 where 
𝑚 ≈ 3𝐾 × number of vertices ≈ 3,000
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INITIAL ESTIMATE FOR MEAN SHAPE

This is true, but misleading
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INITIAL ESTIMATE FOR MEAN SHAPE

True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.
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EXAMPLE RESULTS 177



EXAMPLE RESULTS 178



OPTIMIZATION 179



NUMBER OF IMAGES 180

8 16 32



PARAMETER SENSITIVITY
“Pixel” terms: noise level params “Dimensionless” terms “Smoothness” terms

𝐸 = σ𝑖=1
𝑛 𝐸𝑖

sil + 𝐸𝑖
norm + 𝐸𝑖

con + σ𝑖=1
𝑛 𝐸𝑖

cg
+ 𝐸𝑖

reg
+   𝝃𝟎

𝟐𝐸0
tp
+ 𝝃𝐝𝐞𝐟

𝟐 σ𝑖=1
𝑛 𝐸𝑚

tp
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CONVERGES FASTER, FROM FARTHER AWAY 185

𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤 [Zöllhofer et al ’14]

𝜙 𝑥, 𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2 [Li, Sumner, Pauly ’08]

Red: Tukey’s biweight
Blue: “Lifted” kernel 𝝍

𝜓 𝑥 = min
𝑤

𝑤2𝑥2 + 1 − 𝑤2 2 = 𝑓 𝑥 = ൞

𝑟2

2
2 −

𝑟2

2
, 𝑥 < 0

1, 𝑥 ≥ 0



[BLACK AND RANGARANJAN, CVPR 91] – NEARLY
[LI, PAULY, SUMNER, SIGGRAPH 08] – NEARLY
[ZOLLHÖFER, SIGGRAPH 14] — BASICALLY 
[ZACH, ECCV 14]  — DEFINITELY

Robust estimation
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𝑦 = 𝑎𝑥 + 𝑏
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𝑦 =
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𝑦 = 𝑎𝑥 + 𝑏
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𝑦 =
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But I have “outliers” 



How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎1𝑥 + 𝑎2 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2
2



How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎1𝑥 + 𝑎2 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2
2

>> a = lsqnonlin(@(a) y – a(1)*x – a(2), [1 1]);

Works really well because objective is sum-of-squares



How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎𝑥 + 𝑏 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 =?

But I have “outliers” 



How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎𝑥 + 𝑏 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖𝜓 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

>> a = fminunc(@(a) sum(psi(y – a(1)*x – a(2))), [1 

1]);

𝜓 𝑥



min
𝒂

෍

𝑖

𝜓 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

Global minimum in a good place

But hard to optimize:
• Multiple optima
• Huge flat spots



Robust kernels can be expressed as minimization 
over “outlier process” variables [e.g. Geman & 
Reynolds ‘92, Black & Rangarajan ‘95]

𝜙 𝑥,𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2

𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤



Data residual for 𝑖th data point: 𝑓𝑖 𝒂 = 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

“Lifted” robust kernel: 𝜙 𝑥,𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2

Gives kernel: 𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤

And original nasty problem: min
𝒂

σ𝑖𝜓 𝑓𝑖(𝒂)

Becomes: min
𝒂

σ𝑖min𝑤
𝑤2𝑓𝑖

2 𝒂 + 1 − 𝑤2 2

min
𝒂

σ𝑖min𝑤𝑖

𝑤𝑖
2𝑓𝑖

2 𝒂 + 1 − 𝑤𝑖
2 2

min
𝒂

min
𝑤𝑖

σ𝑖𝑤𝑖
2𝑓𝑖

2 𝒂 + 1 − 𝑤𝑖
2 2

Which is in the Gauss-Newton form…
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𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤 [Zöllhofer et al ’14]

𝜙 𝑥, 𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2 [Li, Sumner, Pauly ’08]

Red: Tukey’s biweight
Blue: “Lifted” kernel 𝝍

𝜓 𝑥 = min
𝑤

𝑤2𝑥2 + 1 − 𝑤2 2 = 𝑓 𝑥 = ൞

𝑟2

2
2 −

𝑟2

2
, 𝑥 < 0

1, 𝑥 ≥ 0

𝜓 𝑥

𝑥 𝑥

𝑤



Before [Zach ’14], no-one used the Gauss-Newton structure, so never beat IRLS (iterated 
reweighted least squares), with its ICP-like convergence.

3D reconstruction datasets: up to 106 parameters, 106 measurements



BUNDLE ADJUSTMENT WITH ROBUST KERNELS 198

Robust kernels can be expressed as minimization over “outlier process” 
variables [e.g. Geman & Reynolds ‘92, Black & Rangarajan ‘95]

Residual 𝑟𝑖 passes through robust kernel 𝜓(𝑟), e.g.

𝜓 𝑟 =
𝑟2

1 + 𝑟2
= min

𝑠
𝑠2𝑟2 + 1 − 𝑠 2

And

min
𝜃

෍

𝑖=1

𝑛

𝜓 𝑟𝑖 𝜃 → min
𝜃,𝑠1,…,𝑠𝑛

෍

𝑖=1

𝑛

𝜙 𝑟𝑖 𝜃 , 𝑠𝑖

But until [Zach ’14], no-one used Gauss-Newton structure of RHS, so never beat 
IRLS (iterated reweighted least squares), with its ICP-like convergence.
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Robust kernels can be expressed as minimization over “outlier process” 
variables [e.g. Geman & Reynolds ‘92, Black & Rangarajan ‘95]

Residual 𝑟𝑖 passes through robust kernel 𝜓(𝑟), e.g.

𝜓 𝑟 =
𝑟2

1 + 𝑟2
= min

𝑠
𝑠2𝑟2 + 1 − 𝑠 2
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SUBDIV PECULIARITIES 1: PIECEWISE DOMAIN
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PIECEWISE DOMAIN 204

 Parameter 
domain Ω is in 
pieces

 Typically not 
unwrappable to a 
plane

A

A

B

B



 Parameter domain Ω: pieces with connectivity graph

PIECEWISE DOMAIN
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 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Easy to get direction 𝜹
from 𝑀𝒖 etc.

 But need 𝒖 + 𝜆𝜹
 Override ceres::Evaluator::Plus

 Easy inside patch

 Need outside too

𝒖
𝜹

𝒖

𝜹



 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Need 𝒖 + 𝜆𝜹

 Outside patch:
 Move distance 𝜏 to edge

 Change direction

 Move 𝛿 − 𝜏

 Repeat in next patch

PIECEWISE DOMAIN 207

𝒖
𝜹

𝒖

𝜹



 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Need 𝒖 + 𝜆𝜹

 Outside patch:
 Move distance 𝜏 to edge

 Change direction

 Move 𝛿 − 𝜏

 Repeat in next patch
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𝒖

𝒖 + 𝜹

𝝉

𝝉′

𝒖 + 𝜹

𝒖



𝐸 𝒖 = 𝒔 −𝑀 𝒖, 𝑋 2

EXAMPLE: SINGLE CLOSEST POINT PROBLEM

𝒔



EXAMPLE: SINGLE CLOSEST POINT PROBLEM

𝒔𝐸 𝒖 = 𝒔 −𝑀 𝒖, 𝑋 2
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 Any vertex of valency ≠ 6 is an “extraordinary vertex”
 Call a triangle with an EV an “irregular triangle”

 Normals and surface at EVs well defined and well 
behaved
 But spline evaluation rule is not…

 Solution: virtually subdivide irregular triangles
 Each green element is still linear in 𝑋, quartic in 𝑢, 𝑣

 Need to generate different 𝐴𝑖𝑗𝑘 for σ𝐴𝑖𝑗𝑘𝑢
𝑖𝑣𝑗𝑿𝑘

 All autogenerated C code using Sympy
 Go to depth 5, and then handle “vestigial patch”

 Initially just use spline coeffs from neighbour

EXTRAORDINARY VERTICES 212

𝐸𝑉





SUBDIV PECULIARITIES 2: VANISHING DERIVATIVES
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“Neighbour extrapolation” for vestigial patch looks OK visually, 
but EVs have other issues:

 Vanishing first derivatives: lim
𝒖→𝐸𝑉

𝑀𝒖 𝒖,𝑋 = 𝟎

 Saddle point for gradient-based optimization.

 Unbounded second derivatives

 Infinite thin-plate energy (inconvenience).

 Derivatives with respect to normal, although well defined, are 
unstable using chain-rule (inconvenience).

 Solutions

 Reparameterise the function near the extraordinary vertex.

 Replace the function near the extraordinary vertex.

THE VESTIGIAL PATCH

𝐸𝑉



REPARAMETERISING TO FIX DERIVATIVES

Example bad parameterization: 

𝒎 𝑠 = 𝑥, 𝑦 = 𝑠, sin 𝑠 𝑠 ∈ ℝ+

𝐦′ s =
d𝒎

d𝑠
𝑠 =

1

2 𝑠
,
cos 𝑠

2 𝑠

⇒ lim
𝑠→0

𝒎′(𝑠) → (∞,∞)

Reparameterise 𝑠 = 𝑡2

𝒎 𝑡 = 𝑥, 𝑦 = 𝑡, sin 𝑡

𝒎′ 𝑡 =
d𝒎

d𝑡
𝑡 = 1, cos 𝑡

⇒ lim
𝑡→0

𝒎𝑡(𝑡) → (1,1)



 Using subdivs is easy
 The messy stuff is encapsulated in Eval_M*(), and Plus()

 Google’s “Ceres” solver does all the Levenberg-Marquardt

 Continuous optimization often doesn’t need a very good 
initial estimate

 Using subdivs allows correspondences 𝒖𝑖 to update during 
the optimization
 If ICP takes a long time, this may not…

 But you must exploit sparsity

 Future work:
 Dogs, hinted ARAP, skeleton, even more speed, …
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 Seen a few students nastily bitten by collapsing meshes

 So what’s changed?  How do I get bitten by the bug, not the hornet?
1. Sum over data, not model

2. Use modern (2006) regularizers

3. Vary everything

4. Define clean interpolants

FITTING MESHES 218
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• Finite diffs fine, just expensive
• Myths: you don't need to find the optimum
• Parameter tuning
• Constrained optimization


