
Fitting Models to Data

1

BMVC 2015 Tutorial

Andrew Fitzgibbon, Microsoft

PEOPLE

Finding Nemo: Deformable Object Class Modelling using Curve Matching CVPR ’10
Mukta Prasad, Andrew Fitzgibbon, Andrew Zisserman, Luc Van Gool

KinÊtre: Animating the World with the Human Body UIST ’12
Jiawen Chen, Shahram Izadi, Andrew Fitzgibbon

What shape are dolphins? Building 3D morphable models from 2D images PAMI ’13
Tom Cashman, Andrew Fitzgibbon

User-Specific Hand Modeling from Monocular Depth Sequences CVPR ’14
Jonathan Taylor, Richard Stebbing, Varun Ramakrishna, Cem Keskin, Jamie Shotton,
Shahram Izadi, Andrew Fitzgibbon, Aaron Hertzmann

Real-Time Non-Rigid Reconstruction Using an RGB-D Camera SIGGRAPH ’14
Michael Zollhöfer, Matthias Nießner, Shahram Izadi, Christoph Rhemann, Christopher Zach,
Matthew Fisher, Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian Theobalt, Marc Stamminger

Learning an Efficient Model of Hand Shape Variation from Depth Images CVPR ’15
Sameh Khamis, Jonathan Taylor, Jamie Shotton, Cem Keskin, Shahram Izadi, Andrew Fitzgibbon

Towards Pointless Structure from Motion: 3D reconstruction from 3D curves ICCV ’15
Irina Nurutdinova, Andrew Fitzgibbon

Secrets of Matrix Factorization: Approximations, Numerics and Manifold Optimization ICCV ’15
Je Hyeong Hong, Andrew Fitzgibbon

LEARN HOW TO SOLVE HARD VISION PROBLEMS,
USING TOOLS THAT MAY APPEAR INELEGANT,
BUT ARE MUCH SMARTER THAN THEY LOOK.

Goal

3

APPLICATIONS

Curve/surface fitting Parameter estimation “Bundle adjustment”
(Video from our friends at Google)

FITTING 3D SHAPE BASES 5

Blanz & Vetter
Siggraph 1999

FITTING 3D SHAPE BASES 6

Anguelov et al.
Siggraph 2005

WHAT DO I MEAN BY SHAPE? 7

Learning an Efficient Model of Hand Shape Variation from Depth Images
Khamis et al, CVPR15

𝑋 𝛽; 𝑽
𝐿(𝛽; 𝑳)

Shape Space

𝑃(𝜃; 𝑋 𝛽, 𝑽 , 𝐿 𝛽, 𝑳)

𝑀 P 𝜃; 𝑋 𝛽, 𝑽 , 𝐿 𝛽, 𝑳

𝛽
Select shape 𝛽

Apply pose 𝜃

Apply subdivision

FITTING HANDS TO 3D DATA

9

IMAGE DENOISING 10[STRANDMARK & AGARWAL, 2014, arXiv:1403.5590]

FITTING SUBDIVISION SURFACES TO 2D DATA

FITTING SUBDIVISION SURFACES TO 2D DATA

FITTING POLYGON MESHES TO VIDEO

14

[3D Scanning Deformable Objects with a Single RGBD Sensor, Dou et al, CVPR15]

Input Kinect Stream KinectFusion Deformable Fusion

KINÊTRE 15

KINÊTRE 16

KINÊTRE 17

REALTIME MESH FITTING TO 3D 18

NONRIGID STRUCTURE FROM MOTION

𝒘11 𝒘12 ⋯ 𝒘1𝑛

𝒘21 𝒘22 ⋯ 𝒘2𝑛

⋮ ⋮ ⋱ ⋮
𝒘𝑇1 𝒘𝑇2 ⋯ 𝒘𝑇𝑛

←
T

im
e

NONRIGID STRUCTURE FROM MOTION

 Affine rigid: linear
embedding into ℝ3, solved with
Wiberg / bundle adjustment

 Perspective rigid: (slightly)
nonlinear embedding into ℝ3

solved with bundle adjustment

 Nonrigid: linear embedding
into ℝ3𝐾, [with nonlinear constraints]

 Kernel nonrigid/Trajectory bases:
nonlinear/basis function
embedding into ℝ𝑘

 Unwrap mosaic: nonlinear
embedding into ℝ2

𝒘11 𝒘12 ⋯ 𝒘1𝑛

𝒘21 𝒘22 ⋯ 𝒘2𝑛

⋮ ⋮ ⋱ ⋮
𝒘𝑇1 𝒘𝑇2 ⋯ 𝒘𝑇𝑛

“UNWRAP MOSAICS”

MATRIX FACTORIZATION [HONG & F., ICCV 15]

MATRIX FACTORIZATION [HONG & F., ICCV 15]

MYTH: YOU DON’T NEED TO OPTIMIZE FAR 25

BUT POINTS ARE TOO EASY…

clownfish

OBJECT CATEGORY MODELS

SHAPE FROM CURVES

34

 The shape from silhouette problem, even for multiple
images of the same structure, was not adequately solved
before

 Why?
1. The discovery of the fundamental matrix and closed form

solutions to various geometry problems revolutionized computer
vision…

2. …and distracted us from easy problems like this one.

 Behind every “closed form” solution (ellipse fitting,
F+radial), there’s a perfectly good nonlinear minimization
solution you could have used instead
 unless you are in the extreme speed domain [see Kukelova et al]

36

Write energy describing the image collection

෍

𝑓=1

𝐹

𝐸data 𝐼𝑓 , 𝜽𝑓 + 𝐸reg 𝜽𝑓 , 𝜽core

Where:

𝜽𝑓 are (unknown) parameters of surface model in frame 𝑓

𝜽core are (unknown) parameters of some shape model (e.g. linear
combination) and 𝐸reg measures distance, e.g. ARAP

And optimize it using Levenberg-Marquardt

 (i.e. any Newton-like algorithm, making maximum use of problem
structure)

FOR EACH TASK, THE METHOD IS THE SAME 37

 So, you can do lots of things by “fitting models to
data”.

 How do you do it right?

 Let’s look at some examples.

38

EXAMPLE: SHAPE FITTING

39

SHAPE QUIZ 40

t = 0:.01:2;

plot(cos(t)*2, sin(t));

SHAPE QUIZ 41

t = 0:.01:2;

plot(cos(t)*2, sin(t));

SHAPE QUIZ 42

>> u = 0:.1:2*pi; v= 0:.1:2*pi;
>> l = ones(size(v));
>> u = u'*l;
>> v = l'*v;
>> plot3(cos(u), sin(u), v, 'k.')

SHAPE QUIZ 43

>> u = 0:.1:2*pi; v= 0:.1:2*pi;
>> l = ones(size(v));
>> u = u'*l;
>> v = l'*v;
>> plot3(cos(u), sin(u), v, 'k.')

What is a shape?
• Functions

• Curves

• Surfaces

44

A SHAPE IS A FUNCTION

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

45

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

A SHAPE IS A FUNCTION

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

46

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

SHAPES DESCRIBE DATA47

SHAPES DESCRIBE DATA48

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

SHAPES DESCRIBE DATA49

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = sin 𝑥 + 𝑎𝑥 + 𝑏

SHAPES DESCRIBE DATA50

𝑦 = 𝑎𝑥 + 𝑏 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑦 = if 𝑥 < 𝑎
𝑥 − 𝑏 2 + 𝑐

else
− 𝑥 − 𝑑 2 + 𝑒

A SHAPE IS A FUNCTION51

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

function y(x::Real)::Real = .3*x + 2

function C(t::Real)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Real, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

FUNCTIONS OVER DOMAINS Ω

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

52

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

CURVES

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

53

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

PARAMETERIZED SHAPES

abstract Curve {

method eval(t::Interval)::Point2D

};

54

PARAMETERIZED SHAPES55

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

abstract Curve {

method eval(t::Interval)::Point2D

};

type Conic < Curve {

eval(t) =

Point2D(t^2 + 2, t^2 – t + 1)

};

PARAMETERIZED SHAPES

abstract Curve {

method eval(t::Interval)::Point2D

};

type Conic < Curve {

ϴ::Real[]; // Shape parameters

eval(t) =

Point2D(ϴ[0]*t^2 + ϴ[1]*t + ϴ[2],

ϴ[3]*t^2 + ϴ[4]*t + ϴ[5])

};

Conic([1,0,2,1,-1,1])

56

2 2.2 2.4 2.6 2.8 30.75

0.8

0.85

0.9

0.95

1

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

57

closest point

x

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

distance(x) = norm(x – this.closest_point(x))

58

closest
point

x

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

distance(x) =

minimize(λ(t) norm(this.eval(t) – x), 0.0)

59

closest
point

x

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method distance(x::Point2D)::Real

...

function f(t) = norm(this.eval(t) – x)^2

distance(x) = minimize(f, Interval::Min)

function minimize(f, t)

while not converged

t -= 𝜶 * f’(t) // Compute derivative

60

closest
point

x

OTHER “METHODS”

abstract Curve {

method eval(t::Interval)::Point2D

method eval’(t::Interval)::Point2D

method distance(x::Point2D)::Real

method closest_point(x::Point2D)::Point2D

};

61

closest
point

x

𝑦 = if 𝑡 < 𝑎
𝑡 − 𝑏 2 + 𝑐

else
𝑓 𝑡 − 𝑑 2 + 𝑒

𝑦′ = if 𝑡 < 𝑎
2(𝑡 − 𝑏)

else
2𝑓(𝑡 − 𝑑)

Shape, meet thy data

62

min
𝜃

෍

𝑛=1

𝑁

𝐶 𝜃 . closest_point(𝒔𝒏)

Sum-of-min problems

𝒔𝑛

A MORE GENERAL PROBLEM CLASS

AN EXEMPLARY PROBLEM

64

“Based on a true story”, not necessarily historically accurate

Note well: this problem is a good proxy for much more realistic problems:

1. Stereo camera calibration

2. Multiple-camera bundle adjustment

3. Surface fitting, e.g. subdivision surfaces to range data, realtime hand tracking

4. Matrix completion

5. Image denoising.

[Inspired by Neil Lawrence’s professorial inaugural]

AN EXEMPLARY PROBLEM

The year: 1801
The hot topic: A “guest planet”, named Ceres
The big question: Where will it reappear?

AN EXEMPLARY PROBLEM

AN EXEMPLARY PROBLEM

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Sample 𝒔𝑛

WE KNOW THE EXACT FORM OF THE MODEL 68

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Known model: Points lie on an ellipse

Clear(ish) objective:
Estimate the ellipse parameters, intersect with circle of sun, achieve fame

AND ESTIMATING IT WELL GETS US CLOSE… 69

RUNNING AN OFF-THE-SHELF FITTER DOES NOT. 70

“Direct least squares fitting of ellipses”
[Fitzgibbon et al, 1999]

Does not minimize “sum of distances”
objective, but a “nearby” convex objective

WE KNOW THE EXACT FORM OF THE MODEL 71

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑥𝑛
𝑦𝑛

for 𝑛 = 1. . 𝑁

• Captured at unknown times 𝑡𝑛

Known model: Points lie on an ellipse
𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Sample 𝒔𝑛

A PARAMETRIC FUNCTION AND A CURVE 72

A parametric description

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Defines a curve (a set of points in ℝ2)

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

Potential confusion: curve parameter 𝑡 and
shape parameter vector 𝜽. This should be ok for
this talk.

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

DISTANCES AND CLOSEST POINTS 73

Sample 𝒔𝑛

All our algorithms will start with a guess of 𝜽 and
refine it.

We will often want to think about the distance of
a sample 𝒔 from the curve 𝐶(𝜽).

Often, closest point is appropriate.
[Others easily handled too.]

𝐷 𝒔, 𝜽 ≔ min
𝒙∈𝐶 𝜽

𝒔 − 𝒙 2

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

A BETTER ESTIMATE 74

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Minimize over all ellipses 𝜽

𝜽∗ ≔ argmin
𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽

Just using an off-the-shelf optimizer.

75

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

Sample 𝒔𝑛

AND ESTIMATING IT WELL GETS US CLOSE… 76

SO ARE WE DONE YET?

 We have an accurate solution
 Certainly better than the “closed form” algorithm, which minimized a “nearby” convex

objective.

 All we need to worry about now is speed…
 If you take 3 weeks to make a prediction, someone else will get the fame.

 Speed is everything. If speed didn’t matter, you would just use random search.

 Strategies to speed it up
 Attack the inner loop

 Remove discrete minimization in 𝐷(𝒔, 𝜽)

 Analyse the problem again

 Understand our tools: ‘fminunc’, or whatever we’re using

 Compute analytic derivatives

77

SPEED RESULTS: SNEAK PREVIEW

A slow method A fast method, slowed down 10x

SPEEDUP 1: ATTACK THE INNER
LOOP

79

SPEEDUP 1: ATTACK THE INNER LOOP 80

𝒔

SPEEDUP 1: ATTACK THE INNER LOOP 81

𝒔

𝐷 𝒔, 𝜽 = min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Define 𝐸(𝑡) = 𝒔 − 𝒄(𝑡; 𝜽) 2

Set
𝑑𝐸

𝑑𝑡
= 0

Yields 4th order polynomial, extract 4 roots.

Much cheaper than previous
implementation.

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

SPEEDUP 2: ANALYSE THE
PROBLEM

82

LOOK AT THE PROBLEM AGAIN 83

Sample 𝒔𝑛

𝒔𝑛 = 𝒄 𝑡𝑛; 𝜽 + 𝑁𝑜𝑖𝑠𝑒

𝒄 𝑡; 𝜽 =
𝜃1 cos 𝑡 + 𝜃2 sin 𝑡 + 𝜃3
𝜃4 cos 𝑡 + 𝜃5 sin 𝑡 + 𝜃6

𝐶 𝜽 = 𝒄 𝑡; 𝜽 | 0 < 𝑡 ≤ 2𝜋

𝐷 𝒔, 𝜽 ≔ min
𝑡

𝒔 − 𝒄 𝑡; 𝜽 2

Minimize over all ellipses 𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽 =෍

𝑛

min
𝑡

𝒔𝑛 − 𝒄 𝑡; 𝜽 2

Notice 𝒄 𝑡; 𝜽 is linear in 𝜽, so function is

=෍

𝑛

min
𝑡𝑛

𝒔𝑛 − 𝐴 𝑡𝑛 𝜽 2

And we can solve in closed form:
• for T = 𝑡𝑛 𝑛=1

𝑁 given 𝜽. Cost 𝑁 RootOfs.
• and 𝜽 given 𝑇. Cost one linear solve.

So alternate—“ICP”, “EM”, “Block Coordinate
Descent”

𝜽∗ ≔ argmin
𝜽

෍

𝑛

𝐷 𝒔𝑛, 𝜽

bad decision…

84

CONVERGENCE RATES

ICP, a bad 1st-order method A second order method, slowed down 10x

CONVERGENCE CURVES

10
-1

10
0

10
1

10
2

10
3

10
-1.4

10
-1.3

10
-1.2

10
-1.1

Time (sec)

Er
ro

r

“Previous iteration” convergence test

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘−1 < 𝜏 will stop here.

“Half the time ago” convergence test

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘/2 < 𝜏 will stop here.

AH, BUT WHAT ABOUT TEST ERROR?

10
-1

10
0

10
1

10
2

10
3

10
-1.4

10
-1.3

10
-1.2

10
-1.1

Time (sec)

Er
ro

r

෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑢

𝑓𝑛 𝑢, 𝜃

෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑢

𝑓𝑛 𝑢, 𝜃

= argmin
𝜃

෍

𝑛

min
𝑢𝑛

𝑓𝑛 𝑢𝑛, 𝜃

෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝑡
𝑓𝑛 𝑢, 𝜃

= argmin
𝜃

෍

𝑛

min
𝑢𝑛

𝑓𝑛 𝑢𝑛, 𝜃

= argmin
𝜃

min
𝑢1..𝑁

෍

𝑛

𝑓𝑛 𝑢𝑛, 𝜃

[Recall that: min
𝑥

𝑓 𝑥 +min
𝑦

𝑔(𝑦) = min
𝑥,𝑦

𝑓 𝑥 + 𝑔(𝑦)]

SUMMARY: TWO METHODS, SAME OBJECTIVE෠𝜃 = argmin
𝜃

෍

𝑛=1

𝑁

min
𝒖

𝑓𝑛 𝑢, 𝜃

 Nasty objective

 𝑀 parameters

 Cost per iteration 𝑂 𝑁

Slow

෠𝜃 = argmin
𝜃

min
𝒖1..𝑁

෍

𝑛

𝑓𝑛 𝑢𝑛, 𝜃

 Simple objective (no “min”)

 𝑀 +𝑁 parameters

 Cost per iteration 𝑂(𝑁𝑀𝑟)

Fast

(in actual real-world wall clock time, even for very large 𝑁)

CONVERGENCE RATES

ICP, a bad 1st-order method A second order method, slowed down 10x

SPEEDUP 3: UNDERSTAND OUR
TOOLS

93

Matlab’s fminunc is one of many nonlinear optimizers.

Takes function 𝑓 𝒙 :ℝ𝑑 ↦ ℝ, initial estimate 𝒙0

General “trust-region” class of strategies repeats:

• Compute update 𝜹𝑘 to current guess 𝒙𝑘
• Using function, derivatives, “trust region radius”, herbs, spices, …

• If update produces lower 𝑓 value
• “accept”: update 𝒙𝑘+1 = 𝒙𝑘 + 𝜹𝑘

Else
• “reject”: fiddle with “trust region radius”

94

ASIDE…

CONTINUOUS
OPTIMIZATION

Andrew Fitzgibbon
Microsoft Research Cambridge

GOAL

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ,

Devise strategies for finding 𝑥 which minimizes 𝑓

• Gradient descent++: Stochastic, Block, Minibatch

• Coordinate descent++: Block

• Newton++: Gauss, Quasi, Damped, Levenberg Marquardt, dogleg, Trust
region, Doublestep LM, [L-]BFGS, Nonlin CG

• Not covered
• Proximal methods: Nesterov, ADMM…

CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓

CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓

99

quadratic

convex

quasiconvex

multi-
extremum

100

quadratic

convex

quasiconvex

multi-
extremum

Easy Hard

DERIVATIVES

 Fast minimization depends on derivatives

101

EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

EXAMPLE

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

>> print -dmeta

EXAMPLE

>> print –dpdf % then go to pdf and paste
OR
>> set(findobj(1, 'type', 'line'), 'linesmoothing', 'on') % then screengrab

EXAMPLE

>> set(gcf, 'paperUnits', 'centimeters', 'paperposition', [1 1 9 6.6])
>> print –dpdf % then go to pdf and paste

SWITCH TO MATLAB…

ALTERNATION

Easy Hard

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

-5 0 5 10 15
-5

0

5

10

15

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

GRADIENT DESCENT

 Alternation is slow
because valleys may not
be axis aligned

 So try gradient descent?

 Note that convergence
proofs are available for
both of the above

 But so what?

AND ON A HARD PROBLEM

USE A BETTER ALGORITHM

 (Nonlinear) conjugate
gradients

 Uses 1st derivatives only

 Avoids “undoing”
previous work

USE A BETTER ALGORITHM

 (Nonlinear) conjugate
gradients

 Uses 1st derivatives only

 And avoids “undoing”
previous work

 101 iterations on
this problem

BUT WE CAN DO BETTER…

USE SECOND DERIVATIVES…

 Starting with 𝒙 how can I choose 𝜹
so that 𝑓 𝒙 + 𝜹 is better than 𝑓(𝒙)?

 So compute
min
𝜹∈ℝ𝑑

𝑓 𝒙 + 𝜹

 But hang on, that’s the same problem we were trying to
solve?

USE SECOND DERIVATIVES…

 Starting with 𝑥 how can I choose 𝛿
so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 So compute
min
𝛿

𝑓 𝑥 + 𝛿

≈ min
𝛿

𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2𝛿

⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)

USE SECOND DERIVATIVES…

 How does it look?

𝑓 𝑥 + 𝛿⊤𝑔(𝑥) + 1
2
𝛿⊤𝐻 𝑥 𝛿

𝑔 𝑥 = 𝛻𝑓 𝑥
𝐻 𝑥 = 𝛻𝛻⊤𝑓(𝑥)

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹

𝑓 + 𝜹⊤𝑔 + 1
2𝜹

⊤𝐻 𝜹

[derive]

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Compute

min
𝜹

𝑓 + 𝜹⊤𝑔 + 1
2𝜹

⊤𝐻 𝜹

𝜹 = −𝐻−1𝑔

IS THAT A GOOD IDEA?

>> use demos

>> demo_taylor_2d(0, 'newton', 'rosenbrock')

>> demo_taylor_2d(0, 'newton', 'sqrt_rosenbrock')

>> demo_taylor_2d(1, 'damped newton ls', 'rosenbrock')

USE SECOND DERIVATIVES…

 Choose 𝛿 so that 𝑓 𝑥 + 𝛿 is better than 𝑓(𝑥)?

 Updates:
𝜹Newton = −𝐻−1𝑔

𝜹GradientDescent = −𝜆𝑔

USE SECOND DERIVATIVES…

 Updates:
𝜹Newton = −𝐻−1𝑔

𝜹GradientDescent = −𝜆𝑔

 So combine them:
𝜹DampedNewton = − 𝐻 + 𝜆−1𝐼𝑑

−1𝑔

= −𝜆 𝜆𝐻 + 𝐼𝑑
−1𝑔

 𝜆 small ⇒conservative gradient step

 𝜆 large ⇒Newton step

UPDATING 𝜆

𝜆 = 10−3; 𝜆′ = 3;

while 𝜆 < 109

𝑓, 𝒈,𝑯 = error_function(𝒙𝑘) % Perhaps Gauss-Newton for H

𝜹 = − 𝑯+ 𝜆𝑰 \𝒈 % Many ways to do this efficiently

𝒙𝑛𝑒𝑤 = 𝒙𝑘 + 𝜹

if error_function(𝒙𝑛𝑒𝑤) < 𝑓:

𝒙𝑘 = 𝒙𝑛𝑒𝑤 % Decreased error, accept the new 𝑥

𝜆 = 𝜆/𝜆′; 𝜆′ = 3 % Doing well—decrease 𝜆

else

𝜆 = 𝜆𝜆′; 𝜆′ = 3𝜆′ % Doing badly—increase 𝜆 quick

1ST DERIVATIVES AGAIN

Levenberg-Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

 where 𝑓𝑖(𝑥) are

 zero-mean

 small at the optimum

BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

𝛻𝑓 𝑥 =

𝛻𝛻⊤𝑓 𝑥 =

BACK TO FIRST DERIVATIVES

Levenberg Marquardt

 Just damped Newton with approximate 𝐻

 For a special form of 𝑓

𝑓 𝑥 =෍

𝑖

𝑓𝑖 𝑥
2

𝛻𝑓 𝑥 =෍

𝑖

2𝑓𝑖 𝑥 𝛻𝑓𝑖(𝑥)

𝛻𝛻⊤𝑓 𝑥 = 2෍

𝑖

𝑓𝑖 𝑥 𝛻𝛻⊤𝑓𝑖 𝑥 + 𝛻𝑓𝑖(𝑥)𝛻
⊤𝑓𝑖 𝑥

ORDER N CUBED?

 Not 𝑂 𝑛3 if you exploit sparsity of Hessian or
Jacobian

J =
𝛻𝑓1(𝑥)

⋮
𝛻𝑓𝑛(𝑥)

TYPICAL HESSIAN STRUCTURE

CONCLUSION: YMMV

CONCLUSION: YMMV

GIRAFFE

500 runs

for k=1:500
𝑥0 = 𝑟𝑎𝑛𝑑𝑛 𝑛, 1 ;
𝑥∗ = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓, 𝑥0 ;
𝐸 𝑘 = 𝑓 𝑥∗

end
plot(sort(E));

CONCLUSION: YMMV

FACE

1000 runs

DINOSAUR

1000 runs

GIRAFFE

500 runs

 On many problems,
alternation is just fine
 Indeed always start with a

couple of alternation steps

 Computing 2nd derivatives is
a pain
 But you don’t need to for LM

 But just alternation is not
 Unless you’re willing to

problem-select

 Convergence guarantees
are fine, but practice is
what matters

 Inverting the Hessian is
rarely 𝑂(𝑛3)

There is no universal optimizer

ON FINITE-DIFFERENCE DERIVATIVES

 𝛻𝑓 =
1

𝜇

𝑓 𝑥 + 𝑒1 − 𝑓(𝑥)
⋮

𝑓 𝑥 + 𝑒𝑑 − 𝑓(𝑥)

 Surprisingly accurate for e.g. 𝜇 = 10−5 (in double prec.)

 Incredibly slow.. Unless (see next slide)

 Useful for checking your analytic derivatives

 Incredibly slow. Try Powell or Simplex instead.

 Central differences twice as slow, somewhat more accurate

GRAPH COLOURING FOR FINITE DIFFS

 Normally try 𝑒1 to 𝑒𝑑 sequentially

 But if we know the nonzero structure of the Jacobian,
can go rather faster.

134

ON SCALING

 We’re minimizing 𝑓(𝑥)

 Many algorithms will be happier if entries of 𝑥 are all
“around 1”.

 E.g. don’t have angle in degrees and distances in km

 Many algorithms may want 𝑓 values to be “close to
𝑥 or close to zero at the optimum”.

 Specifically, think about roundoff in quantities like 𝑓 𝑥𝑘+1 −
𝑓 𝑥𝑘 being compared to numbers like 10−6

QUESTIONS

 What about stochastic gradient descent?

 You can do analogous 2nd order things.

 What about LBFGS?

 I haven’t had much success with it, other folk love it…

 I tried lsqnonlin and it was really slow—why?

 Wrong derivatives (e.g. finite-differences)

 Didn’t use sparsity correctly

 Didn’t set “options.Algorithm” or “options.LargeScale”.

 Resources:

1. Matlab fminsearch and fminunc documentation

2. awful.codeplex.com au_optimproblem

3. Tom Minka webpage on matrix derivatives

4. Google “ceres” solver

5. UTorono “Theano” system for Python

 Gotchas with lsqnonlin
 opts.LargeScale = 'on';

 opts.Jacobian = 'on';

 Need non-rank-def J?

 Need to implement JacobMult?

WHAT IS A SURFACE?

143

0 0.2 0.4 0.6 0.8 1
1.9
2

2.1
2.2
2.3
2.4

CURVES

function y(x::Interval)::Real = .3*x + 2

function C(t::Interval)::Point2D =

Point2D(t^2 + 2, t^2 – t + 1)

function S(u::Interval, v::Real)::Point3D =

Point3D(cos(u), sin(u), v)

144

2 2.2 2.4 2.6 2.8 3
0.75

0.8

0.85

0.9

0.95

1

 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

SURFACE 145

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣

 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

 Probably not all of ℝ2, but a subset Ω

 E.g. square Ω = 0,2𝜋 × [0,𝐻]

 But also any union of patch domains Ω = ሪ
𝑝
Ω𝑝

SURFACE 146

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣

 Surface: mapping 𝑆 𝒖 from ℝ2 ↦ ℝ3

 E.g. cylinder 𝑆 𝑢, 𝑣 = cos 𝑢 , sin 𝑢 , 𝑣

 Probably not all of ℝ2, but a subset Ω

 E.g. square Ω = 0,2𝜋 × [0,𝐻]

 But also any union of patch domains Ω = ሪ
𝑝
Ω𝑝

 And we’ll look at parameterised surfaces 𝑆 𝒖; Θ

 E.g. Cylinder 𝑆 𝑢, 𝑣; 𝑅, 𝐻 = 𝑅 cos 𝑢 , 𝑅 sin 𝑢 , 𝐻𝑣
with Ω = 0,2𝜋 × 0,1

 E.g. subdivision surface 𝑆 𝒖; 𝑋
where Θ = 𝑋 ∈ ℝ3×𝑛 is matrix of control vertices

SURFACE 147

*the surface is actually the set {𝑀 𝑢; Θ |𝑢 ∈ Ω}

𝑢
𝑣

TOOL: SUBDIVISION SURFACES

148

CONTROL MESH 149

Control mesh vertices 𝑋 ∈ ℝ3×𝑚

Here 𝑚 = 16

LIMIT SURFACE 150

Control mesh vertices 𝑋 ∈ ℝ3×𝑚

Here 𝑚 = 16

SUBDIV RULE: STEP 1. ADD NEW VERTICES 151

SUBDIV RULE: STEP 2. AVERAGE NEIGHBOURS 152

2 SUBDIVISIONS 153

3 SUBDIVISIONS 154

LIMIT SURFACE 155

Control mesh vertices 𝑉 ∈ ℝ3×𝑚

Here 𝑚 = 16
Blue surface is 𝑀 𝒖;𝑉 | 𝒖 ∈ Ω
Ω is the grey surface

CONTROL VERTICES DEFINE THE SHAPE 156

Control mesh vertices 𝑉 ∈ ℝ3×𝑛

Here 𝑛 = 16
Blue surface is 𝑀 𝒖;𝑉 | 𝒖 ∈ Ω
Ω is the grey surface

 Mostly, 𝑀 is quite simple:

𝑀 𝒖;𝑋 = 𝑀 𝑡, 𝑢, 𝑣; 𝒙1, … , 𝒙𝑛 = ෍
𝑖+𝑗≤4
𝑘=1..𝑛

𝐴𝑖𝑗𝑘
𝑡 𝑢𝑖𝑣𝑗𝒙𝑘

 Integer triangle id 𝑡
 Quartic in 𝑢, 𝑣
 Linear in 𝑋
 Easy derivatives

 But…
 2nd Derivatives unbounded although normals well defined
 Piecewise parameter domain

SUBDIVISION SURFACE: PARAMETRIC FORM 157

EXAMPLES 158

BACK TO DOLPHINS

159

MODEL REPRESENTATION

𝑋𝑛 = ෍

𝑘=0

𝐾

𝛼𝑖𝑘ℬ𝑘

𝛼𝑖1 ℬ1 𝛼𝑖2 ℬ2+ +𝑋𝑖 =

Linear blend shapes:
Image 𝑖 represented by coefficient
vector 𝜶𝑖 = 𝛼𝑖1, … , 𝛼𝑖𝐾

ℬ0

160

161

162

164

𝒔𝑖𝑗 2D point

𝒏𝑖𝑗 2D normal

DATA TERMS

Image 𝑖

𝒖𝑖𝑗 Contour generator

preimage in 𝛀
(unknown)

c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖

167

𝒔𝑖𝑗 2D point

𝒏𝑖𝑗 2D normal

DATA TERMS

Image 𝑖

𝒖𝑖𝑗 Contour generator

preimage in 𝛀
(unknown)

c.g. point in 3D is 𝑀 𝒖𝑖𝑗; 𝑿𝑖

168

DATA TERMS

Image 𝑖

𝒔𝑖𝑗 , 𝒏𝑖𝑗

169

Camera
position

Silhouette:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖

𝒔𝑖𝑗 − 𝜋 𝜃𝑖 , 𝑀 𝑢𝑖𝑗 , 𝑿𝑖

2

Normal:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖
𝒏𝑖𝑗
0

− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗 , 𝑿𝑖

2

Projection
e.g. Perspective

DATA TERMS

Image 𝑖

𝒔𝑖𝑗 , 𝒏𝑖𝑗

Linear Blend Shapes (PCA) Model:

𝑿𝑖 =෍

𝑘

𝛼𝑖𝑘𝑩𝑘

170

Silhouette:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖

𝒔𝑖𝑗 − 𝜋 𝜃𝑖 , 𝑀 𝑢𝑖𝑗 , 𝑿𝑖

2

Normal:

𝐸𝑖
𝑠𝑖𝑙 =෍

𝑗=1

𝑆𝑖
𝒏𝑖𝑗
0

− 𝑅 𝜃𝑖 𝑁 𝑢𝑖𝑗 , 𝑿𝑖

2

Data fidelity
terms

𝑝 𝐼 𝑋𝑖; 𝑈

Gaussian shape
weights

Smooth
contour

Smooth Basis
𝑝 𝚯

171

172

CONTINOUSOPTIMIZATION

 Can focus on this term to understand entire
optimization.

 Total number of residuals 𝑛 = number of silhouette points.
Say 300𝑁 (𝑁 = number of images) ≈ 10,000

 Total number of unknowns 2𝑛 + 𝐾𝑁 +𝑚 where
𝑚 ≈ 3𝐾 × number of vertices ≈ 3,000

173

INITIAL ESTIMATE FOR MEAN SHAPE

This is true, but misleading

174

INITIAL ESTIMATE FOR MEAN SHAPE

True initial estimate: only the topology is really important.
But the easiest way to get the topology is to build a rough template.

175

176

EXAMPLE RESULTS 177

EXAMPLE RESULTS 178

OPTIMIZATION 179

NUMBER OF IMAGES 180

8 16 32

PARAMETER SENSITIVITY
“Pixel” terms: noise level params “Dimensionless” terms “Smoothness” terms

𝐸 = σ𝑖=1
𝑛 𝐸𝑖

sil + 𝐸𝑖
norm + 𝐸𝑖

con + σ𝑖=1
𝑛 𝐸𝑖

cg
+ 𝐸𝑖

reg
+ 𝝃𝟎

𝟐𝐸0
tp
+ 𝝃𝐝𝐞𝐟

𝟐 σ𝑖=1
𝑛 𝐸𝑚

tp

181

182

183

184

CONVERGES FASTER, FROM FARTHER AWAY 185

𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤 [Zöllhofer et al ’14]

𝜙 𝑥, 𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2 [Li, Sumner, Pauly ’08]

Red: Tukey’s biweight
Blue: “Lifted” kernel 𝝍

𝜓 𝑥 = min
𝑤

𝑤2𝑥2 + 1 − 𝑤2 2 = 𝑓 𝑥 = ൞

𝑟2

2
2 −

𝑟2

2
, 𝑥 < 0

1, 𝑥 ≥ 0

[BLACK AND RANGARANJAN, CVPR 91] – NEARLY
[LI, PAULY, SUMNER, SIGGRAPH 08] – NEARLY
[ZOLLHÖFER, SIGGRAPH 14] — BASICALLY
[ZACH, ECCV 14] — DEFINITELY

Robust estimation

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑦 = 𝑎𝑥 + 𝑏
𝑥
𝑦 =

𝑎
𝑏

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝑦 = 𝑎𝑥 + 𝑏
𝑥
𝑦 =

𝑎
𝑏

But I have “outliers” 

How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎1𝑥 + 𝑎2 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2
2

How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎1𝑥 + 𝑎2 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2
2

>> a = lsqnonlin(@(a) y – a(1)*x – a(2), [1 1]);

Works really well because objective is sum-of-squares

How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎𝑥 + 𝑏 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 =?

But I have “outliers” 

How do I fit a line to data samples 𝒔𝑖 = 𝑥𝑖 , 𝑦𝑖 ?

For this example, let us suppose true inlier model is
𝑦 = 𝑎𝑥 + 𝑏 +𝒩 0, 𝜎

Alg. 1: 𝒂 = 𝒙 ones(𝒙) \𝒚

Alg. 2: 𝒂 = argmin
𝒂

σ𝑖𝜓 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

>> a = fminunc(@(a) sum(psi(y – a(1)*x – a(2))), [1

1]);

𝜓 𝑥

min
𝒂

෍

𝑖

𝜓 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

Global minimum in a good place

But hard to optimize:
• Multiple optima
• Huge flat spots

Robust kernels can be expressed as minimization
over “outlier process” variables [e.g. Geman &
Reynolds ‘92, Black & Rangarajan ‘95]

𝜙 𝑥,𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2

𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤

Data residual for 𝑖th data point: 𝑓𝑖 𝒂 = 𝑦𝑖 − 𝑎1𝑥𝑖 − 𝑎2

“Lifted” robust kernel: 𝜙 𝑥,𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2

Gives kernel: 𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤

And original nasty problem: min
𝒂

σ𝑖𝜓 𝑓𝑖(𝒂)

Becomes: min
𝒂

σ𝑖min𝑤
𝑤2𝑓𝑖

2 𝒂 + 1 − 𝑤2 2

min
𝒂

σ𝑖min𝑤𝑖

𝑤𝑖
2𝑓𝑖

2 𝒂 + 1 − 𝑤𝑖
2 2

min
𝒂

min
𝑤𝑖

σ𝑖𝑤𝑖
2𝑓𝑖

2 𝒂 + 1 − 𝑤𝑖
2 2

Which is in the Gauss-Newton form…

196

𝜓 𝑥 = min
𝑤

𝜙 𝑥,𝑤 [Zöllhofer et al ’14]

𝜙 𝑥, 𝑤 = 𝑤2𝑥2 + 1 − 𝑤2 2 [Li, Sumner, Pauly ’08]

Red: Tukey’s biweight
Blue: “Lifted” kernel 𝝍

𝜓 𝑥 = min
𝑤

𝑤2𝑥2 + 1 − 𝑤2 2 = 𝑓 𝑥 = ൞

𝑟2

2
2 −

𝑟2

2
, 𝑥 < 0

1, 𝑥 ≥ 0

𝜓 𝑥

𝑥 𝑥

𝑤

Before [Zach ’14], no-one used the Gauss-Newton structure, so never beat IRLS (iterated
reweighted least squares), with its ICP-like convergence.

3D reconstruction datasets: up to 106 parameters, 106 measurements

BUNDLE ADJUSTMENT WITH ROBUST KERNELS 198

Robust kernels can be expressed as minimization over “outlier process”
variables [e.g. Geman & Reynolds ‘92, Black & Rangarajan ‘95]

Residual 𝑟𝑖 passes through robust kernel 𝜓(𝑟), e.g.

𝜓 𝑟 =
𝑟2

1 + 𝑟2
= min

𝑠
𝑠2𝑟2 + 1 − 𝑠 2

And

min
𝜃

෍

𝑖=1

𝑛

𝜓 𝑟𝑖 𝜃 → min
𝜃,𝑠1,…,𝑠𝑛

෍

𝑖=1

𝑛

𝜙 𝑟𝑖 𝜃 , 𝑠𝑖

But until [Zach ’14], no-one used Gauss-Newton structure of RHS, so never beat
IRLS (iterated reweighted least squares), with its ICP-like convergence.

BUNDLE ADJUSTMENT WITH ROBUST KERNELS 199

Robust kernels can be expressed as minimization over “outlier process”
variables [e.g. Geman & Reynolds ‘92, Black & Rangarajan ‘95]

Residual 𝑟𝑖 passes through robust kernel 𝜓(𝑟), e.g.

𝜓 𝑟 =
𝑟2

1 + 𝑟2
= min

𝑠
𝑠2𝑟2 + 1 − 𝑠 2

-5 0 5
0

1

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SUBDIV PECULIARITIES 1: PIECEWISE DOMAIN

203

PIECEWISE DOMAIN 204

 Parameter
domain Ω is in
pieces

 Typically not
unwrappable to a
plane

A

A

B

B

 Parameter domain Ω: pieces with connectivity graph

PIECEWISE DOMAIN

PIECEWISE DOMAIN 206

 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Easy to get direction 𝜹
from 𝑀𝒖 etc.

 But need 𝒖 + 𝜆𝜹
 Override ceres::Evaluator::Plus

 Easy inside patch

 Need outside too

𝒖
𝜹

𝒖

𝜹

 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Need 𝒖 + 𝜆𝜹

 Outside patch:
 Move distance 𝜏 to edge

 Change direction

 Move 𝛿 − 𝜏

 Repeat in next patch

PIECEWISE DOMAIN 207

𝒖
𝜹

𝒖

𝜹

 At point 𝒖 = (𝑝, 𝑢, 𝑣)

 Need 𝒖 + 𝜆𝜹

 Outside patch:
 Move distance 𝜏 to edge

 Change direction

 Move 𝛿 − 𝜏

 Repeat in next patch

PIECEWISE DOMAIN 208

𝒖

𝒖 + 𝜹

𝝉

𝝉′

𝒖 + 𝜹

𝒖

𝐸 𝒖 = 𝒔 −𝑀 𝒖, 𝑋 2

EXAMPLE: SINGLE CLOSEST POINT PROBLEM

𝒔

EXAMPLE: SINGLE CLOSEST POINT PROBLEM

𝒔𝐸 𝒖 = 𝒔 −𝑀 𝒖, 𝑋 2

SUBDIV PECULIARITIES 2: EXTRAORDINARY VERTICES

211

 Any vertex of valency ≠ 6 is an “extraordinary vertex”
 Call a triangle with an EV an “irregular triangle”

 Normals and surface at EVs well defined and well
behaved
 But spline evaluation rule is not…

 Solution: virtually subdivide irregular triangles
 Each green element is still linear in 𝑋, quartic in 𝑢, 𝑣

 Need to generate different 𝐴𝑖𝑗𝑘 for σ𝐴𝑖𝑗𝑘𝑢
𝑖𝑣𝑗𝑿𝑘

 All autogenerated C code using Sympy
 Go to depth 5, and then handle “vestigial patch”

 Initially just use spline coeffs from neighbour

EXTRAORDINARY VERTICES 212

𝐸𝑉

SUBDIV PECULIARITIES 2: VANISHING DERIVATIVES

214

“Neighbour extrapolation” for vestigial patch looks OK visually,
but EVs have other issues:

 Vanishing first derivatives: lim
𝒖→𝐸𝑉

𝑀𝒖 𝒖,𝑋 = 𝟎

 Saddle point for gradient-based optimization.

 Unbounded second derivatives

 Infinite thin-plate energy (inconvenience).

 Derivatives with respect to normal, although well defined, are
unstable using chain-rule (inconvenience).

 Solutions

 Reparameterise the function near the extraordinary vertex.

 Replace the function near the extraordinary vertex.

THE VESTIGIAL PATCH

𝐸𝑉

REPARAMETERISING TO FIX DERIVATIVES

Example bad parameterization:

𝒎 𝑠 = 𝑥, 𝑦 = 𝑠, sin 𝑠 𝑠 ∈ ℝ+

𝐦′ s =
d𝒎

d𝑠
𝑠 =

1

2 𝑠
,
cos 𝑠

2 𝑠

⇒ lim
𝑠→0

𝒎′(𝑠) → (∞,∞)

Reparameterise 𝑠 = 𝑡2

𝒎 𝑡 = 𝑥, 𝑦 = 𝑡, sin 𝑡

𝒎′ 𝑡 =
d𝒎

d𝑡
𝑡 = 1, cos 𝑡

⇒ lim
𝑡→0

𝒎𝑡(𝑡) → (1,1)

 Using subdivs is easy
 The messy stuff is encapsulated in Eval_M*(), and Plus()

 Google’s “Ceres” solver does all the Levenberg-Marquardt

 Continuous optimization often doesn’t need a very good
initial estimate

 Using subdivs allows correspondences 𝒖𝑖 to update during
the optimization
 If ICP takes a long time, this may not…

 But you must exploit sparsity

 Future work:
 Dogs, hinted ARAP, skeleton, even more speed, …

CONCLUSIONS ETC 217

 Seen a few students nastily bitten by collapsing meshes

 So what’s changed? How do I get bitten by the bug, not the hornet?
1. Sum over data, not model

2. Use modern (2006) regularizers

3. Vary everything

4. Define clean interpolants

FITTING MESHES 218

CONCLUSIONS 219

• Finite diffs fine, just expensive
• Myths: you don't need to find the optimum
• Parameter tuning
• Constrained optimization

